Metamath Proof Explorer


Theorem naddwordnexlem2

Description: When A is the sum of a limit ordinal (or zero) and a natural number and B is the sum of a larger limit ordinal and a smaller natural number, B is larger than A . (Contributed by RP, 14-Feb-2025)

Ref Expression
Hypotheses naddwordnex.a φ A = ω 𝑜 C + 𝑜 M
naddwordnex.b φ B = ω 𝑜 D + 𝑜 N
naddwordnex.c φ C D
naddwordnex.d φ D On
naddwordnex.m φ M ω
naddwordnex.n φ N M
Assertion naddwordnexlem2 φ A B

Proof

Step Hyp Ref Expression
1 naddwordnex.a φ A = ω 𝑜 C + 𝑜 M
2 naddwordnex.b φ B = ω 𝑜 D + 𝑜 N
3 naddwordnex.c φ C D
4 naddwordnex.d φ D On
5 naddwordnex.m φ M ω
6 naddwordnex.n φ N M
7 1 2 3 4 5 6 naddwordnexlem0 φ A ω 𝑜 suc C ω 𝑜 suc C B
8 ssel ω 𝑜 suc C B A ω 𝑜 suc C A B
9 8 impcom A ω 𝑜 suc C ω 𝑜 suc C B A B
10 7 9 syl φ A B