Metamath Proof Explorer


Theorem naddwordnexlem1

Description: When A is the sum of a limit ordinal (or zero) and a natural number and B is the sum of a larger limit ordinal and a smaller natural number, B is equal to or larger than A . (Contributed by RP, 14-Feb-2025)

Ref Expression
Hypotheses naddwordnex.a φ A = ω 𝑜 C + 𝑜 M
naddwordnex.b φ B = ω 𝑜 D + 𝑜 N
naddwordnex.c φ C D
naddwordnex.d φ D On
naddwordnex.m φ M ω
naddwordnex.n φ N M
Assertion naddwordnexlem1 φ A B

Proof

Step Hyp Ref Expression
1 naddwordnex.a φ A = ω 𝑜 C + 𝑜 M
2 naddwordnex.b φ B = ω 𝑜 D + 𝑜 N
3 naddwordnex.c φ C D
4 naddwordnex.d φ D On
5 naddwordnex.m φ M ω
6 naddwordnex.n φ N M
7 1 2 3 4 5 6 naddwordnexlem0 φ A ω 𝑜 suc C ω 𝑜 suc C B
8 omelon ω On
9 onelon D On C D C On
10 4 3 9 syl2anc φ C On
11 onsuc C On suc C On
12 10 11 syl φ suc C On
13 omcl ω On suc C On ω 𝑜 suc C On
14 8 12 13 sylancr φ ω 𝑜 suc C On
15 onelss ω 𝑜 suc C On A ω 𝑜 suc C A ω 𝑜 suc C
16 14 15 syl φ A ω 𝑜 suc C A ω 𝑜 suc C
17 16 adantrd φ A ω 𝑜 suc C ω 𝑜 suc C B A ω 𝑜 suc C
18 17 imp φ A ω 𝑜 suc C ω 𝑜 suc C B A ω 𝑜 suc C
19 simprr φ A ω 𝑜 suc C ω 𝑜 suc C B ω 𝑜 suc C B
20 18 19 sstrd φ A ω 𝑜 suc C ω 𝑜 suc C B A B
21 7 20 mpdan φ A B