Metamath Proof Explorer


Theorem nadd1suc

Description: Natural addition with 1 is same as successor. (Contributed by RP, 31-Dec-2024)

Ref Expression
Assertion nadd1suc A On A + 1 𝑜 = suc A

Proof

Step Hyp Ref Expression
1 oveq1 a = b a + 1 𝑜 = b + 1 𝑜
2 suceq a = b suc a = suc b
3 1 2 eqeq12d a = b a + 1 𝑜 = suc a b + 1 𝑜 = suc b
4 oveq1 a = A a + 1 𝑜 = A + 1 𝑜
5 suceq a = A suc a = suc A
6 4 5 eqeq12d a = A a + 1 𝑜 = suc a A + 1 𝑜 = suc A
7 naddrid a On a + = a
8 7 eleq1d a On a + x a x
9 8 anbi1d a On a + x b a suc b x a x b a suc b x
10 9 ad2antrr a On b a b + 1 𝑜 = suc b x On a + x b a suc b x a x b a suc b x
11 df1o2 1 𝑜 =
12 11 raleqi y 1 𝑜 a + y x y a + y x
13 0ex V
14 oveq2 y = a + y = a +
15 14 eleq1d y = a + y x a + x
16 13 15 ralsn y a + y x a + x
17 12 16 bitri y 1 𝑜 a + y x a + x
18 17 a1i a On b a b + 1 𝑜 = suc b y 1 𝑜 a + y x a + x
19 oveq1 y = b y + 1 𝑜 = b + 1 𝑜
20 19 eleq1d y = b y + 1 𝑜 x b + 1 𝑜 x
21 20 cbvralvw y a y + 1 𝑜 x b a b + 1 𝑜 x
22 nfv b a On
23 nfra1 b b a b + 1 𝑜 = suc b
24 22 23 nfan b a On b a b + 1 𝑜 = suc b
25 simpr a On b a b + 1 𝑜 = suc b b a b + 1 𝑜 = suc b
26 25 r19.21bi a On b a b + 1 𝑜 = suc b b a b + 1 𝑜 = suc b
27 26 eleq1d a On b a b + 1 𝑜 = suc b b a b + 1 𝑜 x suc b x
28 24 27 ralbida a On b a b + 1 𝑜 = suc b b a b + 1 𝑜 x b a suc b x
29 21 28 bitrid a On b a b + 1 𝑜 = suc b y a y + 1 𝑜 x b a suc b x
30 18 29 anbi12d a On b a b + 1 𝑜 = suc b y 1 𝑜 a + y x y a y + 1 𝑜 x a + x b a suc b x
31 30 adantr a On b a b + 1 𝑜 = suc b x On y 1 𝑜 a + y x y a y + 1 𝑜 x a + x b a suc b x
32 onelon a On b a b On
33 32 ad4ant13 a On x On b a a x b On
34 onsuc b On suc b On
35 33 34 syl a On x On b a a x suc b On
36 simpllr a On x On b a a x x On
37 35 36 jca a On x On b a a x suc b On x On
38 eloni a On Ord a
39 38 ad3antrrr a On x On b a a x Ord a
40 simplr a On x On b a a x b a
41 ordsucss Ord a b a suc b a
42 39 40 41 sylc a On x On b a a x suc b a
43 simpr a On x On b a a x a x
44 42 43 jca a On x On b a a x suc b a a x
45 ontr2 suc b On x On suc b a a x suc b x
46 37 44 45 sylc a On x On b a a x suc b x
47 46 ex a On x On b a a x suc b x
48 47 ralrimdva a On x On a x b a suc b x
49 48 pm4.71d a On x On a x a x b a suc b x
50 49 adantlr a On b a b + 1 𝑜 = suc b x On a x a x b a suc b x
51 10 31 50 3bitr4d a On b a b + 1 𝑜 = suc b x On y 1 𝑜 a + y x y a y + 1 𝑜 x a x
52 51 rabbidva a On b a b + 1 𝑜 = suc b x On | y 1 𝑜 a + y x y a y + 1 𝑜 x = x On | a x
53 52 inteqd a On b a b + 1 𝑜 = suc b x On | y 1 𝑜 a + y x y a y + 1 𝑜 x = x On | a x
54 1on 1 𝑜 On
55 naddov2 a On 1 𝑜 On a + 1 𝑜 = x On | y 1 𝑜 a + y x y a y + 1 𝑜 x
56 54 55 mpan2 a On a + 1 𝑜 = x On | y 1 𝑜 a + y x y a y + 1 𝑜 x
57 56 adantr a On b a b + 1 𝑜 = suc b a + 1 𝑜 = x On | y 1 𝑜 a + y x y a y + 1 𝑜 x
58 onsucmin a On suc a = x On | a x
59 58 adantr a On b a b + 1 𝑜 = suc b suc a = x On | a x
60 53 57 59 3eqtr4d a On b a b + 1 𝑜 = suc b a + 1 𝑜 = suc a
61 60 ex a On b a b + 1 𝑜 = suc b a + 1 𝑜 = suc a
62 3 6 61 tfis3 A On A + 1 𝑜 = suc A