| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq1 |
|
| 2 |
|
suceq |
|
| 3 |
1 2
|
eqeq12d |
|
| 4 |
|
oveq1 |
|
| 5 |
|
suceq |
|
| 6 |
4 5
|
eqeq12d |
|
| 7 |
|
naddrid |
|
| 8 |
7
|
eleq1d |
|
| 9 |
8
|
anbi1d |
|
| 10 |
9
|
ad2antrr |
|
| 11 |
|
df1o2 |
|
| 12 |
11
|
raleqi |
|
| 13 |
|
0ex |
|
| 14 |
|
oveq2 |
|
| 15 |
14
|
eleq1d |
|
| 16 |
13 15
|
ralsn |
|
| 17 |
12 16
|
bitri |
|
| 18 |
17
|
a1i |
|
| 19 |
|
oveq1 |
|
| 20 |
19
|
eleq1d |
|
| 21 |
20
|
cbvralvw |
|
| 22 |
|
nfv |
|
| 23 |
|
nfra1 |
|
| 24 |
22 23
|
nfan |
|
| 25 |
|
simpr |
|
| 26 |
25
|
r19.21bi |
|
| 27 |
26
|
eleq1d |
|
| 28 |
24 27
|
ralbida |
|
| 29 |
21 28
|
bitrid |
|
| 30 |
18 29
|
anbi12d |
|
| 31 |
30
|
adantr |
|
| 32 |
|
onelon |
|
| 33 |
32
|
ad4ant13 |
|
| 34 |
|
onsuc |
|
| 35 |
33 34
|
syl |
|
| 36 |
|
simpllr |
|
| 37 |
35 36
|
jca |
|
| 38 |
|
eloni |
|
| 39 |
38
|
ad3antrrr |
|
| 40 |
|
simplr |
|
| 41 |
|
ordsucss |
|
| 42 |
39 40 41
|
sylc |
|
| 43 |
|
simpr |
|
| 44 |
42 43
|
jca |
|
| 45 |
|
ontr2 |
|
| 46 |
37 44 45
|
sylc |
|
| 47 |
46
|
ex |
|
| 48 |
47
|
ralrimdva |
|
| 49 |
48
|
pm4.71d |
|
| 50 |
49
|
adantlr |
|
| 51 |
10 31 50
|
3bitr4d |
|
| 52 |
51
|
rabbidva |
|
| 53 |
52
|
inteqd |
|
| 54 |
|
1on |
|
| 55 |
|
naddov2 |
|
| 56 |
54 55
|
mpan2 |
|
| 57 |
56
|
adantr |
|
| 58 |
|
onsucmin |
|
| 59 |
58
|
adantr |
|
| 60 |
53 57 59
|
3eqtr4d |
|
| 61 |
60
|
ex |
|
| 62 |
3 6 61
|
tfis3 |
|