Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
|
2 |
|
suceq |
|
3 |
1 2
|
eqeq12d |
|
4 |
|
oveq1 |
|
5 |
|
suceq |
|
6 |
4 5
|
eqeq12d |
|
7 |
|
naddrid |
|
8 |
7
|
eleq1d |
|
9 |
8
|
anbi1d |
|
10 |
9
|
ad2antrr |
|
11 |
|
df1o2 |
|
12 |
11
|
raleqi |
|
13 |
|
0ex |
|
14 |
|
oveq2 |
|
15 |
14
|
eleq1d |
|
16 |
13 15
|
ralsn |
|
17 |
12 16
|
bitri |
|
18 |
17
|
a1i |
|
19 |
|
oveq1 |
|
20 |
19
|
eleq1d |
|
21 |
20
|
cbvralvw |
|
22 |
|
nfv |
|
23 |
|
nfra1 |
|
24 |
22 23
|
nfan |
|
25 |
|
simpr |
|
26 |
25
|
r19.21bi |
|
27 |
26
|
eleq1d |
|
28 |
24 27
|
ralbida |
|
29 |
21 28
|
bitrid |
|
30 |
18 29
|
anbi12d |
|
31 |
30
|
adantr |
|
32 |
|
onelon |
|
33 |
32
|
ad4ant13 |
|
34 |
|
onsuc |
|
35 |
33 34
|
syl |
|
36 |
|
simpllr |
|
37 |
35 36
|
jca |
|
38 |
|
eloni |
|
39 |
38
|
ad3antrrr |
|
40 |
|
simplr |
|
41 |
|
ordsucss |
|
42 |
39 40 41
|
sylc |
|
43 |
|
simpr |
|
44 |
42 43
|
jca |
|
45 |
|
ontr2 |
|
46 |
37 44 45
|
sylc |
|
47 |
46
|
ex |
|
48 |
47
|
ralrimdva |
|
49 |
48
|
pm4.71d |
|
50 |
49
|
adantlr |
|
51 |
10 31 50
|
3bitr4d |
|
52 |
51
|
rabbidva |
|
53 |
52
|
inteqd |
|
54 |
|
1on |
|
55 |
|
naddov2 |
|
56 |
54 55
|
mpan2 |
|
57 |
56
|
adantr |
|
58 |
|
onsucmin |
|
59 |
58
|
adantr |
|
60 |
53 57 59
|
3eqtr4d |
|
61 |
60
|
ex |
|
62 |
3 6 61
|
tfis3 |
|