Metamath Proof Explorer


Theorem nadd1rabon

Description: The set of ordinals which have a natural sum less than some ordinal is an ordinal number. (Contributed by RP, 20-Dec-2024)

Ref Expression
Assertion nadd1rabon Ord A B On C On x A | x + B C On

Proof

Step Hyp Ref Expression
1 nadd1rabord Ord A B On C On Ord x A | x + B C
2 nadd1rabex Ord A B On C On x A | x + B C V
3 elon2 x A | x + B C On Ord x A | x + B C x A | x + B C V
4 1 2 3 sylanbrc Ord A B On C On x A | x + B C On