Metamath Proof Explorer


Theorem nadd2rabord

Description: The set of ordinals which have a natural sum less than some ordinal is an ordinal. (Contributed by RP, 20-Dec-2024)

Ref Expression
Assertion nadd2rabord
|- ( ( Ord A /\ B e. On /\ C e. On ) -> Ord { x e. A | ( B +no x ) e. C } )

Proof

Step Hyp Ref Expression
1 ssrab2
 |-  { x e. A | ( B +no x ) e. C } C_ A
2 ordsson
 |-  ( Ord A -> A C_ On )
3 2 3ad2ant1
 |-  ( ( Ord A /\ B e. On /\ C e. On ) -> A C_ On )
4 1 3 sstrid
 |-  ( ( Ord A /\ B e. On /\ C e. On ) -> { x e. A | ( B +no x ) e. C } C_ On )
5 nadd2rabtr
 |-  ( ( Ord A /\ B e. On /\ C e. On ) -> Tr { x e. A | ( B +no x ) e. C } )
6 dford5
 |-  ( Ord { x e. A | ( B +no x ) e. C } <-> ( { x e. A | ( B +no x ) e. C } C_ On /\ Tr { x e. A | ( B +no x ) e. C } ) )
7 4 5 6 sylanbrc
 |-  ( ( Ord A /\ B e. On /\ C e. On ) -> Ord { x e. A | ( B +no x ) e. C } )