Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Richard Penner
Natural addition of Cantor normal forms
naddov4
Next ⟩
nadd2rabtr
Metamath Proof Explorer
Ascii
Unicode
Theorem
naddov4
Description:
Alternate expression for natural addition.
(Contributed by
RP
, 19-Dec-2024)
Ref
Expression
Assertion
naddov4
⊢
A
∈
On
∧
B
∈
On
→
A
+
B
=
⋂
x
∈
On
|
∀
a
∈
A
a
+
B
∈
x
∩
x
∈
On
|
∀
b
∈
B
A
+
b
∈
x
Proof
Step
Hyp
Ref
Expression
1
naddov2
⊢
A
∈
On
∧
B
∈
On
→
A
+
B
=
⋂
x
∈
On
|
∀
b
∈
B
A
+
b
∈
x
∧
∀
a
∈
A
a
+
B
∈
x
2
inrab
⊢
x
∈
On
|
∀
b
∈
B
A
+
b
∈
x
∩
x
∈
On
|
∀
a
∈
A
a
+
B
∈
x
=
x
∈
On
|
∀
b
∈
B
A
+
b
∈
x
∧
∀
a
∈
A
a
+
B
∈
x
3
incom
⊢
x
∈
On
|
∀
b
∈
B
A
+
b
∈
x
∩
x
∈
On
|
∀
a
∈
A
a
+
B
∈
x
=
x
∈
On
|
∀
a
∈
A
a
+
B
∈
x
∩
x
∈
On
|
∀
b
∈
B
A
+
b
∈
x
4
2
3
eqtr3i
⊢
x
∈
On
|
∀
b
∈
B
A
+
b
∈
x
∧
∀
a
∈
A
a
+
B
∈
x
=
x
∈
On
|
∀
a
∈
A
a
+
B
∈
x
∩
x
∈
On
|
∀
b
∈
B
A
+
b
∈
x
5
4
inteqi
⊢
⋂
x
∈
On
|
∀
b
∈
B
A
+
b
∈
x
∧
∀
a
∈
A
a
+
B
∈
x
=
⋂
x
∈
On
|
∀
a
∈
A
a
+
B
∈
x
∩
x
∈
On
|
∀
b
∈
B
A
+
b
∈
x
6
1
5
eqtrdi
⊢
A
∈
On
∧
B
∈
On
→
A
+
B
=
⋂
x
∈
On
|
∀
a
∈
A
a
+
B
∈
x
∩
x
∈
On
|
∀
b
∈
B
A
+
b
∈
x