| Step | Hyp | Ref | Expression | 
						
							| 1 |  | onun2 | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝐴  ∪  𝐵 )  ∈  On ) | 
						
							| 2 |  | onsucunipr | ⊢ ( ( ( 𝐴  ∪  𝐵 )  ∈  On  ∧  𝐶  ∈  On )  →  suc  ∪  { ( 𝐴  ∪  𝐵 ) ,  𝐶 }  =  ∪  { suc  ( 𝐴  ∪  𝐵 ) ,  suc  𝐶 } ) | 
						
							| 3 | 1 2 | sylan | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  𝐶  ∈  On )  →  suc  ∪  { ( 𝐴  ∪  𝐵 ) ,  𝐶 }  =  ∪  { suc  ( 𝐴  ∪  𝐵 ) ,  suc  𝐶 } ) | 
						
							| 4 |  | uniprg | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ∪  { 𝐴 ,  𝐵 }  =  ( 𝐴  ∪  𝐵 ) ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  𝐶  ∈  On )  →  ∪  { 𝐴 ,  𝐵 }  =  ( 𝐴  ∪  𝐵 ) ) | 
						
							| 6 |  | unisng | ⊢ ( 𝐶  ∈  On  →  ∪  { 𝐶 }  =  𝐶 ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  𝐶  ∈  On )  →  ∪  { 𝐶 }  =  𝐶 ) | 
						
							| 8 | 5 7 | uneq12d | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  𝐶  ∈  On )  →  ( ∪  { 𝐴 ,  𝐵 }  ∪  ∪  { 𝐶 } )  =  ( ( 𝐴  ∪  𝐵 )  ∪  𝐶 ) ) | 
						
							| 9 |  | df-tp | ⊢ { 𝐴 ,  𝐵 ,  𝐶 }  =  ( { 𝐴 ,  𝐵 }  ∪  { 𝐶 } ) | 
						
							| 10 | 9 | unieqi | ⊢ ∪  { 𝐴 ,  𝐵 ,  𝐶 }  =  ∪  ( { 𝐴 ,  𝐵 }  ∪  { 𝐶 } ) | 
						
							| 11 |  | uniun | ⊢ ∪  ( { 𝐴 ,  𝐵 }  ∪  { 𝐶 } )  =  ( ∪  { 𝐴 ,  𝐵 }  ∪  ∪  { 𝐶 } ) | 
						
							| 12 | 10 11 | eqtri | ⊢ ∪  { 𝐴 ,  𝐵 ,  𝐶 }  =  ( ∪  { 𝐴 ,  𝐵 }  ∪  ∪  { 𝐶 } ) | 
						
							| 13 | 12 | a1i | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  𝐶  ∈  On )  →  ∪  { 𝐴 ,  𝐵 ,  𝐶 }  =  ( ∪  { 𝐴 ,  𝐵 }  ∪  ∪  { 𝐶 } ) ) | 
						
							| 14 |  | uniprg | ⊢ ( ( ( 𝐴  ∪  𝐵 )  ∈  On  ∧  𝐶  ∈  On )  →  ∪  { ( 𝐴  ∪  𝐵 ) ,  𝐶 }  =  ( ( 𝐴  ∪  𝐵 )  ∪  𝐶 ) ) | 
						
							| 15 | 1 14 | sylan | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  𝐶  ∈  On )  →  ∪  { ( 𝐴  ∪  𝐵 ) ,  𝐶 }  =  ( ( 𝐴  ∪  𝐵 )  ∪  𝐶 ) ) | 
						
							| 16 | 8 13 15 | 3eqtr4d | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  𝐶  ∈  On )  →  ∪  { 𝐴 ,  𝐵 ,  𝐶 }  =  ∪  { ( 𝐴  ∪  𝐵 ) ,  𝐶 } ) | 
						
							| 17 |  | suceq | ⊢ ( ∪  { 𝐴 ,  𝐵 ,  𝐶 }  =  ∪  { ( 𝐴  ∪  𝐵 ) ,  𝐶 }  →  suc  ∪  { 𝐴 ,  𝐵 ,  𝐶 }  =  suc  ∪  { ( 𝐴  ∪  𝐵 ) ,  𝐶 } ) | 
						
							| 18 | 16 17 | syl | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  𝐶  ∈  On )  →  suc  ∪  { 𝐴 ,  𝐵 ,  𝐶 }  =  suc  ∪  { ( 𝐴  ∪  𝐵 ) ,  𝐶 } ) | 
						
							| 19 |  | df-tp | ⊢ { suc  𝐴 ,  suc  𝐵 ,  suc  𝐶 }  =  ( { suc  𝐴 ,  suc  𝐵 }  ∪  { suc  𝐶 } ) | 
						
							| 20 | 19 | unieqi | ⊢ ∪  { suc  𝐴 ,  suc  𝐵 ,  suc  𝐶 }  =  ∪  ( { suc  𝐴 ,  suc  𝐵 }  ∪  { suc  𝐶 } ) | 
						
							| 21 |  | uniun | ⊢ ∪  ( { suc  𝐴 ,  suc  𝐵 }  ∪  { suc  𝐶 } )  =  ( ∪  { suc  𝐴 ,  suc  𝐵 }  ∪  ∪  { suc  𝐶 } ) | 
						
							| 22 | 20 21 | eqtri | ⊢ ∪  { suc  𝐴 ,  suc  𝐵 ,  suc  𝐶 }  =  ( ∪  { suc  𝐴 ,  suc  𝐵 }  ∪  ∪  { suc  𝐶 } ) | 
						
							| 23 |  | onsuc | ⊢ ( ( 𝐴  ∪  𝐵 )  ∈  On  →  suc  ( 𝐴  ∪  𝐵 )  ∈  On ) | 
						
							| 24 | 1 23 | syl | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  suc  ( 𝐴  ∪  𝐵 )  ∈  On ) | 
						
							| 25 |  | onsuc | ⊢ ( 𝐶  ∈  On  →  suc  𝐶  ∈  On ) | 
						
							| 26 |  | uniprg | ⊢ ( ( suc  ( 𝐴  ∪  𝐵 )  ∈  On  ∧  suc  𝐶  ∈  On )  →  ∪  { suc  ( 𝐴  ∪  𝐵 ) ,  suc  𝐶 }  =  ( suc  ( 𝐴  ∪  𝐵 )  ∪  suc  𝐶 ) ) | 
						
							| 27 | 24 25 26 | syl2an | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  𝐶  ∈  On )  →  ∪  { suc  ( 𝐴  ∪  𝐵 ) ,  suc  𝐶 }  =  ( suc  ( 𝐴  ∪  𝐵 )  ∪  suc  𝐶 ) ) | 
						
							| 28 |  | suceq | ⊢ ( ∪  { 𝐴 ,  𝐵 }  =  ( 𝐴  ∪  𝐵 )  →  suc  ∪  { 𝐴 ,  𝐵 }  =  suc  ( 𝐴  ∪  𝐵 ) ) | 
						
							| 29 | 4 28 | syl | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  suc  ∪  { 𝐴 ,  𝐵 }  =  suc  ( 𝐴  ∪  𝐵 ) ) | 
						
							| 30 |  | onsucunipr | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  suc  ∪  { 𝐴 ,  𝐵 }  =  ∪  { suc  𝐴 ,  suc  𝐵 } ) | 
						
							| 31 | 29 30 | eqtr3d | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  suc  ( 𝐴  ∪  𝐵 )  =  ∪  { suc  𝐴 ,  suc  𝐵 } ) | 
						
							| 32 | 31 | adantr | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  𝐶  ∈  On )  →  suc  ( 𝐴  ∪  𝐵 )  =  ∪  { suc  𝐴 ,  suc  𝐵 } ) | 
						
							| 33 |  | unisng | ⊢ ( suc  𝐶  ∈  On  →  ∪  { suc  𝐶 }  =  suc  𝐶 ) | 
						
							| 34 | 25 33 | syl | ⊢ ( 𝐶  ∈  On  →  ∪  { suc  𝐶 }  =  suc  𝐶 ) | 
						
							| 35 | 34 | eqcomd | ⊢ ( 𝐶  ∈  On  →  suc  𝐶  =  ∪  { suc  𝐶 } ) | 
						
							| 36 | 35 | adantl | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  𝐶  ∈  On )  →  suc  𝐶  =  ∪  { suc  𝐶 } ) | 
						
							| 37 | 32 36 | uneq12d | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  𝐶  ∈  On )  →  ( suc  ( 𝐴  ∪  𝐵 )  ∪  suc  𝐶 )  =  ( ∪  { suc  𝐴 ,  suc  𝐵 }  ∪  ∪  { suc  𝐶 } ) ) | 
						
							| 38 | 27 37 | eqtrd | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  𝐶  ∈  On )  →  ∪  { suc  ( 𝐴  ∪  𝐵 ) ,  suc  𝐶 }  =  ( ∪  { suc  𝐴 ,  suc  𝐵 }  ∪  ∪  { suc  𝐶 } ) ) | 
						
							| 39 | 22 38 | eqtr4id | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  𝐶  ∈  On )  →  ∪  { suc  𝐴 ,  suc  𝐵 ,  suc  𝐶 }  =  ∪  { suc  ( 𝐴  ∪  𝐵 ) ,  suc  𝐶 } ) | 
						
							| 40 | 3 18 39 | 3eqtr4d | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  𝐶  ∈  On )  →  suc  ∪  { 𝐴 ,  𝐵 ,  𝐶 }  =  ∪  { suc  𝐴 ,  suc  𝐵 ,  suc  𝐶 } ) | 
						
							| 41 | 40 | 3impa | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  →  suc  ∪  { 𝐴 ,  𝐵 ,  𝐶 }  =  ∪  { suc  𝐴 ,  suc  𝐵 ,  suc  𝐶 } ) |