Step |
Hyp |
Ref |
Expression |
1 |
|
onun2 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ∪ 𝐵 ) ∈ On ) |
2 |
|
onsucunipr |
⊢ ( ( ( 𝐴 ∪ 𝐵 ) ∈ On ∧ 𝐶 ∈ On ) → suc ∪ { ( 𝐴 ∪ 𝐵 ) , 𝐶 } = ∪ { suc ( 𝐴 ∪ 𝐵 ) , suc 𝐶 } ) |
3 |
1 2
|
sylan |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ On ) → suc ∪ { ( 𝐴 ∪ 𝐵 ) , 𝐶 } = ∪ { suc ( 𝐴 ∪ 𝐵 ) , suc 𝐶 } ) |
4 |
|
uniprg |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ∪ { 𝐴 , 𝐵 } = ( 𝐴 ∪ 𝐵 ) ) |
5 |
4
|
adantr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ On ) → ∪ { 𝐴 , 𝐵 } = ( 𝐴 ∪ 𝐵 ) ) |
6 |
|
unisng |
⊢ ( 𝐶 ∈ On → ∪ { 𝐶 } = 𝐶 ) |
7 |
6
|
adantl |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ On ) → ∪ { 𝐶 } = 𝐶 ) |
8 |
5 7
|
uneq12d |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ On ) → ( ∪ { 𝐴 , 𝐵 } ∪ ∪ { 𝐶 } ) = ( ( 𝐴 ∪ 𝐵 ) ∪ 𝐶 ) ) |
9 |
|
df-tp |
⊢ { 𝐴 , 𝐵 , 𝐶 } = ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) |
10 |
9
|
unieqi |
⊢ ∪ { 𝐴 , 𝐵 , 𝐶 } = ∪ ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) |
11 |
|
uniun |
⊢ ∪ ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) = ( ∪ { 𝐴 , 𝐵 } ∪ ∪ { 𝐶 } ) |
12 |
10 11
|
eqtri |
⊢ ∪ { 𝐴 , 𝐵 , 𝐶 } = ( ∪ { 𝐴 , 𝐵 } ∪ ∪ { 𝐶 } ) |
13 |
12
|
a1i |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ On ) → ∪ { 𝐴 , 𝐵 , 𝐶 } = ( ∪ { 𝐴 , 𝐵 } ∪ ∪ { 𝐶 } ) ) |
14 |
|
uniprg |
⊢ ( ( ( 𝐴 ∪ 𝐵 ) ∈ On ∧ 𝐶 ∈ On ) → ∪ { ( 𝐴 ∪ 𝐵 ) , 𝐶 } = ( ( 𝐴 ∪ 𝐵 ) ∪ 𝐶 ) ) |
15 |
1 14
|
sylan |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ On ) → ∪ { ( 𝐴 ∪ 𝐵 ) , 𝐶 } = ( ( 𝐴 ∪ 𝐵 ) ∪ 𝐶 ) ) |
16 |
8 13 15
|
3eqtr4d |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ On ) → ∪ { 𝐴 , 𝐵 , 𝐶 } = ∪ { ( 𝐴 ∪ 𝐵 ) , 𝐶 } ) |
17 |
|
suceq |
⊢ ( ∪ { 𝐴 , 𝐵 , 𝐶 } = ∪ { ( 𝐴 ∪ 𝐵 ) , 𝐶 } → suc ∪ { 𝐴 , 𝐵 , 𝐶 } = suc ∪ { ( 𝐴 ∪ 𝐵 ) , 𝐶 } ) |
18 |
16 17
|
syl |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ On ) → suc ∪ { 𝐴 , 𝐵 , 𝐶 } = suc ∪ { ( 𝐴 ∪ 𝐵 ) , 𝐶 } ) |
19 |
|
df-tp |
⊢ { suc 𝐴 , suc 𝐵 , suc 𝐶 } = ( { suc 𝐴 , suc 𝐵 } ∪ { suc 𝐶 } ) |
20 |
19
|
unieqi |
⊢ ∪ { suc 𝐴 , suc 𝐵 , suc 𝐶 } = ∪ ( { suc 𝐴 , suc 𝐵 } ∪ { suc 𝐶 } ) |
21 |
|
uniun |
⊢ ∪ ( { suc 𝐴 , suc 𝐵 } ∪ { suc 𝐶 } ) = ( ∪ { suc 𝐴 , suc 𝐵 } ∪ ∪ { suc 𝐶 } ) |
22 |
20 21
|
eqtri |
⊢ ∪ { suc 𝐴 , suc 𝐵 , suc 𝐶 } = ( ∪ { suc 𝐴 , suc 𝐵 } ∪ ∪ { suc 𝐶 } ) |
23 |
|
onsuc |
⊢ ( ( 𝐴 ∪ 𝐵 ) ∈ On → suc ( 𝐴 ∪ 𝐵 ) ∈ On ) |
24 |
1 23
|
syl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → suc ( 𝐴 ∪ 𝐵 ) ∈ On ) |
25 |
|
onsuc |
⊢ ( 𝐶 ∈ On → suc 𝐶 ∈ On ) |
26 |
|
uniprg |
⊢ ( ( suc ( 𝐴 ∪ 𝐵 ) ∈ On ∧ suc 𝐶 ∈ On ) → ∪ { suc ( 𝐴 ∪ 𝐵 ) , suc 𝐶 } = ( suc ( 𝐴 ∪ 𝐵 ) ∪ suc 𝐶 ) ) |
27 |
24 25 26
|
syl2an |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ On ) → ∪ { suc ( 𝐴 ∪ 𝐵 ) , suc 𝐶 } = ( suc ( 𝐴 ∪ 𝐵 ) ∪ suc 𝐶 ) ) |
28 |
|
suceq |
⊢ ( ∪ { 𝐴 , 𝐵 } = ( 𝐴 ∪ 𝐵 ) → suc ∪ { 𝐴 , 𝐵 } = suc ( 𝐴 ∪ 𝐵 ) ) |
29 |
4 28
|
syl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → suc ∪ { 𝐴 , 𝐵 } = suc ( 𝐴 ∪ 𝐵 ) ) |
30 |
|
onsucunipr |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → suc ∪ { 𝐴 , 𝐵 } = ∪ { suc 𝐴 , suc 𝐵 } ) |
31 |
29 30
|
eqtr3d |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → suc ( 𝐴 ∪ 𝐵 ) = ∪ { suc 𝐴 , suc 𝐵 } ) |
32 |
31
|
adantr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ On ) → suc ( 𝐴 ∪ 𝐵 ) = ∪ { suc 𝐴 , suc 𝐵 } ) |
33 |
|
unisng |
⊢ ( suc 𝐶 ∈ On → ∪ { suc 𝐶 } = suc 𝐶 ) |
34 |
25 33
|
syl |
⊢ ( 𝐶 ∈ On → ∪ { suc 𝐶 } = suc 𝐶 ) |
35 |
34
|
eqcomd |
⊢ ( 𝐶 ∈ On → suc 𝐶 = ∪ { suc 𝐶 } ) |
36 |
35
|
adantl |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ On ) → suc 𝐶 = ∪ { suc 𝐶 } ) |
37 |
32 36
|
uneq12d |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ On ) → ( suc ( 𝐴 ∪ 𝐵 ) ∪ suc 𝐶 ) = ( ∪ { suc 𝐴 , suc 𝐵 } ∪ ∪ { suc 𝐶 } ) ) |
38 |
27 37
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ On ) → ∪ { suc ( 𝐴 ∪ 𝐵 ) , suc 𝐶 } = ( ∪ { suc 𝐴 , suc 𝐵 } ∪ ∪ { suc 𝐶 } ) ) |
39 |
22 38
|
eqtr4id |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ On ) → ∪ { suc 𝐴 , suc 𝐵 , suc 𝐶 } = ∪ { suc ( 𝐴 ∪ 𝐵 ) , suc 𝐶 } ) |
40 |
3 18 39
|
3eqtr4d |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ On ) → suc ∪ { 𝐴 , 𝐵 , 𝐶 } = ∪ { suc 𝐴 , suc 𝐵 , suc 𝐶 } ) |
41 |
40
|
3impa |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → suc ∪ { 𝐴 , 𝐵 , 𝐶 } = ∪ { suc 𝐴 , suc 𝐵 , suc 𝐶 } ) |