Metamath Proof Explorer


Theorem onsucunipr

Description: The successor to the union of any pair of ordinals is the union of the successors of the elements. (Contributed by RP, 12-Feb-2025)

Ref Expression
Assertion onsucunipr
|- ( ( A e. On /\ B e. On ) -> suc U. { A , B } = U. { suc A , suc B } )

Proof

Step Hyp Ref Expression
1 ssequn1
 |-  ( A C_ B <-> ( A u. B ) = B )
2 suceq
 |-  ( ( A u. B ) = B -> suc ( A u. B ) = suc B )
3 1 2 sylbi
 |-  ( A C_ B -> suc ( A u. B ) = suc B )
4 3 adantl
 |-  ( ( ( A e. On /\ B e. On ) /\ A C_ B ) -> suc ( A u. B ) = suc B )
5 onsucwordi
 |-  ( ( A e. On /\ B e. On ) -> ( A C_ B -> suc A C_ suc B ) )
6 5 imp
 |-  ( ( ( A e. On /\ B e. On ) /\ A C_ B ) -> suc A C_ suc B )
7 ssequn1
 |-  ( suc A C_ suc B <-> ( suc A u. suc B ) = suc B )
8 6 7 sylib
 |-  ( ( ( A e. On /\ B e. On ) /\ A C_ B ) -> ( suc A u. suc B ) = suc B )
9 4 8 eqtr4d
 |-  ( ( ( A e. On /\ B e. On ) /\ A C_ B ) -> suc ( A u. B ) = ( suc A u. suc B ) )
10 ssequn2
 |-  ( B C_ A <-> ( A u. B ) = A )
11 suceq
 |-  ( ( A u. B ) = A -> suc ( A u. B ) = suc A )
12 10 11 sylbi
 |-  ( B C_ A -> suc ( A u. B ) = suc A )
13 12 adantl
 |-  ( ( ( A e. On /\ B e. On ) /\ B C_ A ) -> suc ( A u. B ) = suc A )
14 onsucwordi
 |-  ( ( B e. On /\ A e. On ) -> ( B C_ A -> suc B C_ suc A ) )
15 14 ancoms
 |-  ( ( A e. On /\ B e. On ) -> ( B C_ A -> suc B C_ suc A ) )
16 15 imp
 |-  ( ( ( A e. On /\ B e. On ) /\ B C_ A ) -> suc B C_ suc A )
17 ssequn2
 |-  ( suc B C_ suc A <-> ( suc A u. suc B ) = suc A )
18 16 17 sylib
 |-  ( ( ( A e. On /\ B e. On ) /\ B C_ A ) -> ( suc A u. suc B ) = suc A )
19 13 18 eqtr4d
 |-  ( ( ( A e. On /\ B e. On ) /\ B C_ A ) -> suc ( A u. B ) = ( suc A u. suc B ) )
20 eloni
 |-  ( A e. On -> Ord A )
21 eloni
 |-  ( B e. On -> Ord B )
22 ordtri2or2
 |-  ( ( Ord A /\ Ord B ) -> ( A C_ B \/ B C_ A ) )
23 20 21 22 syl2an
 |-  ( ( A e. On /\ B e. On ) -> ( A C_ B \/ B C_ A ) )
24 9 19 23 mpjaodan
 |-  ( ( A e. On /\ B e. On ) -> suc ( A u. B ) = ( suc A u. suc B ) )
25 uniprg
 |-  ( ( A e. On /\ B e. On ) -> U. { A , B } = ( A u. B ) )
26 suceq
 |-  ( U. { A , B } = ( A u. B ) -> suc U. { A , B } = suc ( A u. B ) )
27 25 26 syl
 |-  ( ( A e. On /\ B e. On ) -> suc U. { A , B } = suc ( A u. B ) )
28 onsuc
 |-  ( A e. On -> suc A e. On )
29 onsuc
 |-  ( B e. On -> suc B e. On )
30 uniprg
 |-  ( ( suc A e. On /\ suc B e. On ) -> U. { suc A , suc B } = ( suc A u. suc B ) )
31 28 29 30 syl2an
 |-  ( ( A e. On /\ B e. On ) -> U. { suc A , suc B } = ( suc A u. suc B ) )
32 24 27 31 3eqtr4d
 |-  ( ( A e. On /\ B e. On ) -> suc U. { A , B } = U. { suc A , suc B } )