Description: Existence of supremum. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | supex2g | ⊢ ( 𝐴 ∈ 𝐶 → sup ( 𝐵 , 𝐴 , 𝑅 ) ∈ V ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-sup | ⊢ sup ( 𝐵 , 𝐴 , 𝑅 ) = ∪ { 𝑥 ∈ 𝐴 ∣ ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) } | |
| 2 | rabexg | ⊢ ( 𝐴 ∈ 𝐶 → { 𝑥 ∈ 𝐴 ∣ ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) } ∈ V ) | |
| 3 | 2 | uniexd | ⊢ ( 𝐴 ∈ 𝐶 → ∪ { 𝑥 ∈ 𝐴 ∣ ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) } ∈ V ) | 
| 4 | 1 3 | eqeltrid | ⊢ ( 𝐴 ∈ 𝐶 → sup ( 𝐵 , 𝐴 , 𝑅 ) ∈ V ) |