| Step | Hyp | Ref | Expression | 
						
							| 1 |  | suprubrnmpt2.x | ⊢ Ⅎ 𝑥 𝜑 | 
						
							| 2 |  | suprubrnmpt2.b | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ℝ ) | 
						
							| 3 |  | suprubrnmpt2.l | ⊢ ( 𝜑  →  ∃ 𝑦  ∈  ℝ ∀ 𝑥  ∈  𝐴 𝐵  ≤  𝑦 ) | 
						
							| 4 |  | suprubrnmpt2.c | ⊢ ( 𝜑  →  𝐶  ∈  𝐴 ) | 
						
							| 5 |  | suprubrnmpt2.d | ⊢ ( 𝜑  →  𝐷  ∈  ℝ ) | 
						
							| 6 |  | suprubrnmpt2.i | ⊢ ( 𝑥  =  𝐶  →  𝐵  =  𝐷 ) | 
						
							| 7 |  | eqid | ⊢ ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  ( 𝑥  ∈  𝐴  ↦  𝐵 ) | 
						
							| 8 | 1 7 2 | rnmptssd | ⊢ ( 𝜑  →  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ⊆  ℝ ) | 
						
							| 9 | 7 6 | elrnmpt1s | ⊢ ( ( 𝐶  ∈  𝐴  ∧  𝐷  ∈  ℝ )  →  𝐷  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) | 
						
							| 10 | 4 5 9 | syl2anc | ⊢ ( 𝜑  →  𝐷  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) | 
						
							| 11 | 10 | ne0d | ⊢ ( 𝜑  →  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ≠  ∅ ) | 
						
							| 12 | 1 3 | rnmptbdd | ⊢ ( 𝜑  →  ∃ 𝑦  ∈  ℝ ∀ 𝑤  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) 𝑤  ≤  𝑦 ) | 
						
							| 13 | 8 11 12 10 | suprubd | ⊢ ( 𝜑  →  𝐷  ≤  sup ( ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ,  ℝ ,   <  ) ) |