| Step | Hyp | Ref | Expression | 
						
							| 1 |  | suprubrnmpt2.x |  |-  F/ x ph | 
						
							| 2 |  | suprubrnmpt2.b |  |-  ( ( ph /\ x e. A ) -> B e. RR ) | 
						
							| 3 |  | suprubrnmpt2.l |  |-  ( ph -> E. y e. RR A. x e. A B <_ y ) | 
						
							| 4 |  | suprubrnmpt2.c |  |-  ( ph -> C e. A ) | 
						
							| 5 |  | suprubrnmpt2.d |  |-  ( ph -> D e. RR ) | 
						
							| 6 |  | suprubrnmpt2.i |  |-  ( x = C -> B = D ) | 
						
							| 7 |  | eqid |  |-  ( x e. A |-> B ) = ( x e. A |-> B ) | 
						
							| 8 | 1 7 2 | rnmptssd |  |-  ( ph -> ran ( x e. A |-> B ) C_ RR ) | 
						
							| 9 | 7 6 | elrnmpt1s |  |-  ( ( C e. A /\ D e. RR ) -> D e. ran ( x e. A |-> B ) ) | 
						
							| 10 | 4 5 9 | syl2anc |  |-  ( ph -> D e. ran ( x e. A |-> B ) ) | 
						
							| 11 | 10 | ne0d |  |-  ( ph -> ran ( x e. A |-> B ) =/= (/) ) | 
						
							| 12 | 1 3 | rnmptbdd |  |-  ( ph -> E. y e. RR A. w e. ran ( x e. A |-> B ) w <_ y ) | 
						
							| 13 | 8 11 12 10 | suprubd |  |-  ( ph -> D <_ sup ( ran ( x e. A |-> B ) , RR , < ) ) |