Metamath Proof Explorer


Theorem supxrcl

Description: The supremum of an arbitrary set of extended reals is an extended real. (Contributed by NM, 24-Oct-2005)

Ref Expression
Assertion supxrcl ( 𝐴 ⊆ ℝ* → sup ( 𝐴 , ℝ* , < ) ∈ ℝ* )

Proof

Step Hyp Ref Expression
1 xrltso < Or ℝ*
2 1 a1i ( 𝐴 ⊆ ℝ* → < Or ℝ* )
3 xrsupss ( 𝐴 ⊆ ℝ* → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) )
4 2 3 supcl ( 𝐴 ⊆ ℝ* → sup ( 𝐴 , ℝ* , < ) ∈ ℝ* )