Metamath Proof Explorer


Theorem supxrlub

Description: The supremum of a set of extended reals is less than or equal to an upper bound. (Contributed by Mario Carneiro, 13-Sep-2015)

Ref Expression
Assertion supxrlub ( ( 𝐴 ⊆ ℝ*𝐵 ∈ ℝ* ) → ( 𝐵 < sup ( 𝐴 , ℝ* , < ) ↔ ∃ 𝑥𝐴 𝐵 < 𝑥 ) )

Proof

Step Hyp Ref Expression
1 xrltso < Or ℝ*
2 1 a1i ( 𝐴 ⊆ ℝ* → < Or ℝ* )
3 xrsupss ( 𝐴 ⊆ ℝ* → ∃ 𝑦 ∈ ℝ* ( ∀ 𝑧𝐴 ¬ 𝑦 < 𝑧 ∧ ∀ 𝑧 ∈ ℝ* ( 𝑧 < 𝑦 → ∃ 𝑥𝐴 𝑧 < 𝑥 ) ) )
4 id ( 𝐴 ⊆ ℝ*𝐴 ⊆ ℝ* )
5 2 3 4 suplub2 ( ( 𝐴 ⊆ ℝ*𝐵 ∈ ℝ* ) → ( 𝐵 < sup ( 𝐴 , ℝ* , < ) ↔ ∃ 𝑥𝐴 𝐵 < 𝑥 ) )