Description: The supremum of a set of extended reals is less than or equal to an upper bound. (Contributed by Mario Carneiro, 13-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | supxrlub | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐵 < sup ( 𝐴 , ℝ* , < ) ↔ ∃ 𝑥 ∈ 𝐴 𝐵 < 𝑥 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrltso | ⊢ < Or ℝ* | |
2 | 1 | a1i | ⊢ ( 𝐴 ⊆ ℝ* → < Or ℝ* ) |
3 | xrsupss | ⊢ ( 𝐴 ⊆ ℝ* → ∃ 𝑦 ∈ ℝ* ( ∀ 𝑧 ∈ 𝐴 ¬ 𝑦 < 𝑧 ∧ ∀ 𝑧 ∈ ℝ* ( 𝑧 < 𝑦 → ∃ 𝑥 ∈ 𝐴 𝑧 < 𝑥 ) ) ) | |
4 | id | ⊢ ( 𝐴 ⊆ ℝ* → 𝐴 ⊆ ℝ* ) | |
5 | 2 3 4 | suplub2 | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐵 < sup ( 𝐴 , ℝ* , < ) ↔ ∃ 𝑥 ∈ 𝐴 𝐵 < 𝑥 ) ) |