Metamath Proof Explorer


Theorem supxrlub

Description: The supremum of a set of extended reals is less than or equal to an upper bound. (Contributed by Mario Carneiro, 13-Sep-2015)

Ref Expression
Assertion supxrlub A * B * B < sup A * < x A B < x

Proof

Step Hyp Ref Expression
1 xrltso < Or *
2 1 a1i A * < Or *
3 xrsupss A * y * z A ¬ y < z z * z < y x A z < x
4 id A * A *
5 2 3 4 suplub2 A * B * B < sup A * < x A B < x