Metamath Proof Explorer


Theorem tgdom

Description: A space has no more open sets than subsets of a basis. (Contributed by Stefan O'Rear, 22-Feb-2015) (Revised by Mario Carneiro, 9-Apr-2015)

Ref Expression
Assertion tgdom ( 𝐵𝑉 → ( topGen ‘ 𝐵 ) ≼ 𝒫 𝐵 )

Proof

Step Hyp Ref Expression
1 pwexg ( 𝐵𝑉 → 𝒫 𝐵 ∈ V )
2 inss1 ( 𝐵 ∩ 𝒫 𝑥 ) ⊆ 𝐵
3 vpwex 𝒫 𝑥 ∈ V
4 3 inex2 ( 𝐵 ∩ 𝒫 𝑥 ) ∈ V
5 4 elpw ( ( 𝐵 ∩ 𝒫 𝑥 ) ∈ 𝒫 𝐵 ↔ ( 𝐵 ∩ 𝒫 𝑥 ) ⊆ 𝐵 )
6 2 5 mpbir ( 𝐵 ∩ 𝒫 𝑥 ) ∈ 𝒫 𝐵
7 6 a1i ( 𝑥 ∈ ( topGen ‘ 𝐵 ) → ( 𝐵 ∩ 𝒫 𝑥 ) ∈ 𝒫 𝐵 )
8 unieq ( ( 𝐵 ∩ 𝒫 𝑥 ) = ( 𝐵 ∩ 𝒫 𝑦 ) → ( 𝐵 ∩ 𝒫 𝑥 ) = ( 𝐵 ∩ 𝒫 𝑦 ) )
9 8 adantl ( ( ( 𝑥 ∈ ( topGen ‘ 𝐵 ) ∧ 𝑦 ∈ ( topGen ‘ 𝐵 ) ) ∧ ( 𝐵 ∩ 𝒫 𝑥 ) = ( 𝐵 ∩ 𝒫 𝑦 ) ) → ( 𝐵 ∩ 𝒫 𝑥 ) = ( 𝐵 ∩ 𝒫 𝑦 ) )
10 eltg4i ( 𝑥 ∈ ( topGen ‘ 𝐵 ) → 𝑥 = ( 𝐵 ∩ 𝒫 𝑥 ) )
11 10 ad2antrr ( ( ( 𝑥 ∈ ( topGen ‘ 𝐵 ) ∧ 𝑦 ∈ ( topGen ‘ 𝐵 ) ) ∧ ( 𝐵 ∩ 𝒫 𝑥 ) = ( 𝐵 ∩ 𝒫 𝑦 ) ) → 𝑥 = ( 𝐵 ∩ 𝒫 𝑥 ) )
12 eltg4i ( 𝑦 ∈ ( topGen ‘ 𝐵 ) → 𝑦 = ( 𝐵 ∩ 𝒫 𝑦 ) )
13 12 ad2antlr ( ( ( 𝑥 ∈ ( topGen ‘ 𝐵 ) ∧ 𝑦 ∈ ( topGen ‘ 𝐵 ) ) ∧ ( 𝐵 ∩ 𝒫 𝑥 ) = ( 𝐵 ∩ 𝒫 𝑦 ) ) → 𝑦 = ( 𝐵 ∩ 𝒫 𝑦 ) )
14 9 11 13 3eqtr4d ( ( ( 𝑥 ∈ ( topGen ‘ 𝐵 ) ∧ 𝑦 ∈ ( topGen ‘ 𝐵 ) ) ∧ ( 𝐵 ∩ 𝒫 𝑥 ) = ( 𝐵 ∩ 𝒫 𝑦 ) ) → 𝑥 = 𝑦 )
15 14 ex ( ( 𝑥 ∈ ( topGen ‘ 𝐵 ) ∧ 𝑦 ∈ ( topGen ‘ 𝐵 ) ) → ( ( 𝐵 ∩ 𝒫 𝑥 ) = ( 𝐵 ∩ 𝒫 𝑦 ) → 𝑥 = 𝑦 ) )
16 pweq ( 𝑥 = 𝑦 → 𝒫 𝑥 = 𝒫 𝑦 )
17 16 ineq2d ( 𝑥 = 𝑦 → ( 𝐵 ∩ 𝒫 𝑥 ) = ( 𝐵 ∩ 𝒫 𝑦 ) )
18 15 17 impbid1 ( ( 𝑥 ∈ ( topGen ‘ 𝐵 ) ∧ 𝑦 ∈ ( topGen ‘ 𝐵 ) ) → ( ( 𝐵 ∩ 𝒫 𝑥 ) = ( 𝐵 ∩ 𝒫 𝑦 ) ↔ 𝑥 = 𝑦 ) )
19 7 18 dom2 ( 𝒫 𝐵 ∈ V → ( topGen ‘ 𝐵 ) ≼ 𝒫 𝐵 )
20 1 19 syl ( 𝐵𝑉 → ( topGen ‘ 𝐵 ) ≼ 𝒫 𝐵 )