Description: The scalar ring of a topological module is a topological ring. (Contributed by Mario Carneiro, 5-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tlmtrg.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| Assertion | tlmtrg | ⊢ ( 𝑊 ∈ TopMod → 𝐹 ∈ TopRing ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tlmtrg.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 2 | eqid | ⊢ ( ·sf ‘ 𝑊 ) = ( ·sf ‘ 𝑊 ) | |
| 3 | eqid | ⊢ ( TopOpen ‘ 𝑊 ) = ( TopOpen ‘ 𝑊 ) | |
| 4 | eqid | ⊢ ( TopOpen ‘ 𝐹 ) = ( TopOpen ‘ 𝐹 ) | |
| 5 | 2 3 1 4 | istlm | ⊢ ( 𝑊 ∈ TopMod ↔ ( ( 𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ TopRing ) ∧ ( ·sf ‘ 𝑊 ) ∈ ( ( ( TopOpen ‘ 𝐹 ) ×t ( TopOpen ‘ 𝑊 ) ) Cn ( TopOpen ‘ 𝑊 ) ) ) ) |
| 6 | 5 | simplbi | ⊢ ( 𝑊 ∈ TopMod → ( 𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ TopRing ) ) |
| 7 | 6 | simp3d | ⊢ ( 𝑊 ∈ TopMod → 𝐹 ∈ TopRing ) |