Description: The usual topology on ( RR X. RR ) is the product topology of the usual topology on RR . (Contributed by Thierry Arnoux, 21-Sep-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tpr2tp.0 | ⊢ 𝐽 = ( topGen ‘ ran (,) ) | |
| Assertion | tpr2uni | ⊢ ∪ ( 𝐽 ×t 𝐽 ) = ( ℝ × ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tpr2tp.0 | ⊢ 𝐽 = ( topGen ‘ ran (,) ) | |
| 2 | 1 | tpr2tp | ⊢ ( 𝐽 ×t 𝐽 ) ∈ ( TopOn ‘ ( ℝ × ℝ ) ) |
| 3 | 2 | toponunii | ⊢ ( ℝ × ℝ ) = ∪ ( 𝐽 ×t 𝐽 ) |
| 4 | 3 | eqcomi | ⊢ ∪ ( 𝐽 ×t 𝐽 ) = ( ℝ × ℝ ) |