Description: The usual topology on ( RR X. RR ) is the product topology of the usual topology on RR . (Contributed by Thierry Arnoux, 21-Sep-2017)
Ref | Expression | ||
---|---|---|---|
Hypothesis | tpr2tp.0 | ⊢ 𝐽 = ( topGen ‘ ran (,) ) | |
Assertion | tpr2uni | ⊢ ∪ ( 𝐽 ×t 𝐽 ) = ( ℝ × ℝ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tpr2tp.0 | ⊢ 𝐽 = ( topGen ‘ ran (,) ) | |
2 | 1 | tpr2tp | ⊢ ( 𝐽 ×t 𝐽 ) ∈ ( TopOn ‘ ( ℝ × ℝ ) ) |
3 | 2 | toponunii | ⊢ ( ℝ × ℝ ) = ∪ ( 𝐽 ×t 𝐽 ) |
4 | 3 | eqcomi | ⊢ ∪ ( 𝐽 ×t 𝐽 ) = ( ℝ × ℝ ) |