Metamath Proof Explorer


Theorem tpr2uni

Description: The usual topology on ( RR X. RR ) is the product topology of the usual topology on RR . (Contributed by Thierry Arnoux, 21-Sep-2017)

Ref Expression
Hypothesis tpr2tp.0 𝐽 = ( topGen ‘ ran (,) )
Assertion tpr2uni ( 𝐽 ×t 𝐽 ) = ( ℝ × ℝ )

Proof

Step Hyp Ref Expression
1 tpr2tp.0 𝐽 = ( topGen ‘ ran (,) )
2 1 tpr2tp ( 𝐽 ×t 𝐽 ) ∈ ( TopOn ‘ ( ℝ × ℝ ) )
3 2 toponunii ( ℝ × ℝ ) = ( 𝐽 ×t 𝐽 )
4 3 eqcomi ( 𝐽 ×t 𝐽 ) = ( ℝ × ℝ )