Metamath Proof Explorer


Theorem tpr2tp

Description: The usual topology on ( RR X. RR ) is the product topology of the usual topology on RR . (Contributed by Thierry Arnoux, 21-Sep-2017)

Ref Expression
Hypothesis tpr2tp.0 𝐽 = ( topGen ‘ ran (,) )
Assertion tpr2tp ( 𝐽 ×t 𝐽 ) ∈ ( TopOn ‘ ( ℝ × ℝ ) )

Proof

Step Hyp Ref Expression
1 tpr2tp.0 𝐽 = ( topGen ‘ ran (,) )
2 retopon ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ )
3 1 2 eqeltri 𝐽 ∈ ( TopOn ‘ ℝ )
4 txtopon ( ( 𝐽 ∈ ( TopOn ‘ ℝ ) ∧ 𝐽 ∈ ( TopOn ‘ ℝ ) ) → ( 𝐽 ×t 𝐽 ) ∈ ( TopOn ‘ ( ℝ × ℝ ) ) )
5 3 3 4 mp2an ( 𝐽 ×t 𝐽 ) ∈ ( TopOn ‘ ( ℝ × ℝ ) )