Description: The usual topology on ( RR X. RR ) is the product topology of the usual topology on RR . (Contributed by Thierry Arnoux, 21-Sep-2017)
Ref | Expression | ||
---|---|---|---|
Hypothesis | tpr2tp.0 | ⊢ 𝐽 = ( topGen ‘ ran (,) ) | |
Assertion | tpr2tp | ⊢ ( 𝐽 ×t 𝐽 ) ∈ ( TopOn ‘ ( ℝ × ℝ ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tpr2tp.0 | ⊢ 𝐽 = ( topGen ‘ ran (,) ) | |
2 | retopon | ⊢ ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) | |
3 | 1 2 | eqeltri | ⊢ 𝐽 ∈ ( TopOn ‘ ℝ ) |
4 | txtopon | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ ℝ ) ∧ 𝐽 ∈ ( TopOn ‘ ℝ ) ) → ( 𝐽 ×t 𝐽 ) ∈ ( TopOn ‘ ( ℝ × ℝ ) ) ) | |
5 | 3 3 4 | mp2an | ⊢ ( 𝐽 ×t 𝐽 ) ∈ ( TopOn ‘ ( ℝ × ℝ ) ) |