Metamath Proof Explorer


Theorem tpr2tp

Description: The usual topology on ( RR X. RR ) is the product topology of the usual topology on RR . (Contributed by Thierry Arnoux, 21-Sep-2017)

Ref Expression
Hypothesis tpr2tp.0 J=topGenran.
Assertion tpr2tp J×tJTopOn2

Proof

Step Hyp Ref Expression
1 tpr2tp.0 J=topGenran.
2 retopon topGenran.TopOn
3 1 2 eqeltri JTopOn
4 txtopon JTopOnJTopOnJ×tJTopOn2
5 3 3 4 mp2an J×tJTopOn2