Description: Equality implies bijection. (Contributed by RP, 5-May-2020) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | trcleq2lemRP | ⊢ ( 𝐴 = 𝐵 → ( ( 𝑅 ⊆ 𝐴 ∧ ( 𝐴 ∘ 𝐴 ) ⊆ 𝐴 ) ↔ ( 𝑅 ⊆ 𝐵 ∧ ( 𝐵 ∘ 𝐵 ) ⊆ 𝐵 ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | id | ⊢ ( 𝐴 = 𝐵 → 𝐴 = 𝐵 ) | |
| 2 | 1 1 | coeq12d | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 ∘ 𝐴 ) = ( 𝐵 ∘ 𝐵 ) ) | 
| 3 | 2 1 | sseq12d | ⊢ ( 𝐴 = 𝐵 → ( ( 𝐴 ∘ 𝐴 ) ⊆ 𝐴 ↔ ( 𝐵 ∘ 𝐵 ) ⊆ 𝐵 ) ) | 
| 4 | 3 | cleq2lem | ⊢ ( 𝐴 = 𝐵 → ( ( 𝑅 ⊆ 𝐴 ∧ ( 𝐴 ∘ 𝐴 ) ⊆ 𝐴 ) ↔ ( 𝑅 ⊆ 𝐵 ∧ ( 𝐵 ∘ 𝐵 ) ⊆ 𝐵 ) ) ) |