Description: Equality implies bijection. (Contributed by RP, 5-May-2020) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | trcleq2lemRP | |- ( A = B -> ( ( R C_ A /\ ( A o. A ) C_ A ) <-> ( R C_ B /\ ( B o. B ) C_ B ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | id | |- ( A = B -> A = B ) | |
| 2 | 1 1 | coeq12d | |- ( A = B -> ( A o. A ) = ( B o. B ) ) | 
| 3 | 2 1 | sseq12d | |- ( A = B -> ( ( A o. A ) C_ A <-> ( B o. B ) C_ B ) ) | 
| 4 | 3 | cleq2lem | |- ( A = B -> ( ( R C_ A /\ ( A o. A ) C_ A ) <-> ( R C_ B /\ ( B o. B ) C_ B ) ) ) |