Description: A Tseitin axiom for triple logical disjunction, in deduction form. (Contributed by Giovanni Mascellani, 25-Mar-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | ts3or1 | ⊢ ( 𝜃 → ( ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ∨ ¬ ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exmidd | ⊢ ( 𝜃 → ( ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ∨ ¬ ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ) ) | |
2 | df-3or | ⊢ ( ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ) | |
3 | 2 | notbii | ⊢ ( ¬ ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ¬ ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ) |
4 | 3 | orbi2i | ⊢ ( ( ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ∨ ¬ ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ) ↔ ( ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ∨ ¬ ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ) ) |
5 | 1 4 | sylibr | ⊢ ( 𝜃 → ( ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ∨ ¬ ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ) ) |