Metamath Proof Explorer


Theorem ts3or1

Description: A Tseitin axiom for triple logical disjunction, in deduction form. (Contributed by Giovanni Mascellani, 25-Mar-2018)

Ref Expression
Assertion ts3or1 ( 𝜃 → ( ( ( 𝜑𝜓 ) ∨ 𝜒 ) ∨ ¬ ( 𝜑𝜓𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 exmidd ( 𝜃 → ( ( ( 𝜑𝜓 ) ∨ 𝜒 ) ∨ ¬ ( ( 𝜑𝜓 ) ∨ 𝜒 ) ) )
2 df-3or ( ( 𝜑𝜓𝜒 ) ↔ ( ( 𝜑𝜓 ) ∨ 𝜒 ) )
3 2 notbii ( ¬ ( 𝜑𝜓𝜒 ) ↔ ¬ ( ( 𝜑𝜓 ) ∨ 𝜒 ) )
4 3 orbi2i ( ( ( ( 𝜑𝜓 ) ∨ 𝜒 ) ∨ ¬ ( 𝜑𝜓𝜒 ) ) ↔ ( ( ( 𝜑𝜓 ) ∨ 𝜒 ) ∨ ¬ ( ( 𝜑𝜓 ) ∨ 𝜒 ) ) )
5 1 4 sylibr ( 𝜃 → ( ( ( 𝜑𝜓 ) ∨ 𝜒 ) ∨ ¬ ( 𝜑𝜓𝜒 ) ) )