Description: A Tseitin axiom for triple logical disjunction, in deduction form. (Contributed by Giovanni Mascellani, 25-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ts3or1 | |- ( th -> ( ( ( ph \/ ps ) \/ ch ) \/ -. ( ph \/ ps \/ ch ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | exmidd | |- ( th -> ( ( ( ph \/ ps ) \/ ch ) \/ -. ( ( ph \/ ps ) \/ ch ) ) ) | |
| 2 | df-3or | |- ( ( ph \/ ps \/ ch ) <-> ( ( ph \/ ps ) \/ ch ) ) | |
| 3 | 2 | notbii | |- ( -. ( ph \/ ps \/ ch ) <-> -. ( ( ph \/ ps ) \/ ch ) ) | 
| 4 | 3 | orbi2i | |- ( ( ( ( ph \/ ps ) \/ ch ) \/ -. ( ph \/ ps \/ ch ) ) <-> ( ( ( ph \/ ps ) \/ ch ) \/ -. ( ( ph \/ ps ) \/ ch ) ) ) | 
| 5 | 1 4 | sylibr | |- ( th -> ( ( ( ph \/ ps ) \/ ch ) \/ -. ( ph \/ ps \/ ch ) ) ) |