Metamath Proof Explorer


Theorem ts3or1

Description: A Tseitin axiom for triple logical disjunction, in deduction form. (Contributed by Giovanni Mascellani, 25-Mar-2018)

Ref Expression
Assertion ts3or1
|- ( th -> ( ( ( ph \/ ps ) \/ ch ) \/ -. ( ph \/ ps \/ ch ) ) )

Proof

Step Hyp Ref Expression
1 exmidd
 |-  ( th -> ( ( ( ph \/ ps ) \/ ch ) \/ -. ( ( ph \/ ps ) \/ ch ) ) )
2 df-3or
 |-  ( ( ph \/ ps \/ ch ) <-> ( ( ph \/ ps ) \/ ch ) )
3 2 notbii
 |-  ( -. ( ph \/ ps \/ ch ) <-> -. ( ( ph \/ ps ) \/ ch ) )
4 3 orbi2i
 |-  ( ( ( ( ph \/ ps ) \/ ch ) \/ -. ( ph \/ ps \/ ch ) ) <-> ( ( ( ph \/ ps ) \/ ch ) \/ -. ( ( ph \/ ps ) \/ ch ) ) )
5 1 4 sylibr
 |-  ( th -> ( ( ( ph \/ ps ) \/ ch ) \/ -. ( ph \/ ps \/ ch ) ) )