Metamath Proof Explorer


Theorem txtop

Description: The product of two topologies is a topology. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion txtop ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑅 ×t 𝑆 ) ∈ Top )

Proof

Step Hyp Ref Expression
1 eqid ran ( 𝑢𝑅 , 𝑣𝑆 ↦ ( 𝑢 × 𝑣 ) ) = ran ( 𝑢𝑅 , 𝑣𝑆 ↦ ( 𝑢 × 𝑣 ) )
2 1 txval ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑅 ×t 𝑆 ) = ( topGen ‘ ran ( 𝑢𝑅 , 𝑣𝑆 ↦ ( 𝑢 × 𝑣 ) ) ) )
3 topbas ( 𝑅 ∈ Top → 𝑅 ∈ TopBases )
4 topbas ( 𝑆 ∈ Top → 𝑆 ∈ TopBases )
5 1 txbas ( ( 𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases ) → ran ( 𝑢𝑅 , 𝑣𝑆 ↦ ( 𝑢 × 𝑣 ) ) ∈ TopBases )
6 3 4 5 syl2an ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ran ( 𝑢𝑅 , 𝑣𝑆 ↦ ( 𝑢 × 𝑣 ) ) ∈ TopBases )
7 tgcl ( ran ( 𝑢𝑅 , 𝑣𝑆 ↦ ( 𝑢 × 𝑣 ) ) ∈ TopBases → ( topGen ‘ ran ( 𝑢𝑅 , 𝑣𝑆 ↦ ( 𝑢 × 𝑣 ) ) ) ∈ Top )
8 6 7 syl ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( topGen ‘ ran ( 𝑢𝑅 , 𝑣𝑆 ↦ ( 𝑢 × 𝑣 ) ) ) ∈ Top )
9 2 8 eqeltrd ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑅 ×t 𝑆 ) ∈ Top )