| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑈 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑈 ) → 𝐴 ⊆ ℝ ) |
| 2 |
|
simp2 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑈 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑈 ) → 𝑈 ∈ 𝐴 ) |
| 3 |
2
|
ne0d |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑈 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑈 ) → 𝐴 ≠ ∅ ) |
| 4 |
1 2
|
sseldd |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑈 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑈 ) → 𝑈 ∈ ℝ ) |
| 5 |
|
simp3 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑈 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑈 ) → ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑈 ) |
| 6 |
|
brralrspcev |
⊢ ( ( 𝑈 ∈ ℝ ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑈 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑦 ) |
| 7 |
4 5 6
|
syl2anc |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑈 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑈 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑦 ) |
| 8 |
1 3 7
|
3jca |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑈 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑈 ) → ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) |
| 9 |
|
suprub |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑦 ) ∧ 𝑈 ∈ 𝐴 ) → 𝑈 ≤ sup ( 𝐴 , ℝ , < ) ) |
| 10 |
8 2 9
|
syl2anc |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑈 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑈 ) → 𝑈 ≤ sup ( 𝐴 , ℝ , < ) ) |
| 11 |
|
suprleub |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑦 ) ∧ 𝑈 ∈ ℝ ) → ( sup ( 𝐴 , ℝ , < ) ≤ 𝑈 ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑈 ) ) |
| 12 |
8 4 11
|
syl2anc |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑈 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑈 ) → ( sup ( 𝐴 , ℝ , < ) ≤ 𝑈 ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑈 ) ) |
| 13 |
5 12
|
mpbird |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑈 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑈 ) → sup ( 𝐴 , ℝ , < ) ≤ 𝑈 ) |
| 14 |
|
suprcl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑦 ) → sup ( 𝐴 , ℝ , < ) ∈ ℝ ) |
| 15 |
8 14
|
syl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑈 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑈 ) → sup ( 𝐴 , ℝ , < ) ∈ ℝ ) |
| 16 |
4 15
|
letri3d |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑈 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑈 ) → ( 𝑈 = sup ( 𝐴 , ℝ , < ) ↔ ( 𝑈 ≤ sup ( 𝐴 , ℝ , < ) ∧ sup ( 𝐴 , ℝ , < ) ≤ 𝑈 ) ) ) |
| 17 |
10 13 16
|
mpbir2and |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑈 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑈 ) → 𝑈 = sup ( 𝐴 , ℝ , < ) ) |