Metamath Proof Explorer
		
		
		
		Description:  A spanning subgraph S of a hypergraph G is a hypergraph.
         (Contributed by AV, 11-Oct-2020)  (Proof shortened by AV, 18-Nov-2020)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | uhgrspan.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
					
						|  |  | uhgrspan.e | ⊢ 𝐸  =  ( iEdg ‘ 𝐺 ) | 
					
						|  |  | uhgrspan.s | ⊢ ( 𝜑  →  𝑆  ∈  𝑊 ) | 
					
						|  |  | uhgrspan.q | ⊢ ( 𝜑  →  ( Vtx ‘ 𝑆 )  =  𝑉 ) | 
					
						|  |  | uhgrspan.r | ⊢ ( 𝜑  →  ( iEdg ‘ 𝑆 )  =  ( 𝐸  ↾  𝐴 ) ) | 
					
						|  |  | uhgrspan.g | ⊢ ( 𝜑  →  𝐺  ∈  UHGraph ) | 
				
					|  | Assertion | uhgrspan | ⊢  ( 𝜑  →  𝑆  ∈  UHGraph ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uhgrspan.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | uhgrspan.e | ⊢ 𝐸  =  ( iEdg ‘ 𝐺 ) | 
						
							| 3 |  | uhgrspan.s | ⊢ ( 𝜑  →  𝑆  ∈  𝑊 ) | 
						
							| 4 |  | uhgrspan.q | ⊢ ( 𝜑  →  ( Vtx ‘ 𝑆 )  =  𝑉 ) | 
						
							| 5 |  | uhgrspan.r | ⊢ ( 𝜑  →  ( iEdg ‘ 𝑆 )  =  ( 𝐸  ↾  𝐴 ) ) | 
						
							| 6 |  | uhgrspan.g | ⊢ ( 𝜑  →  𝐺  ∈  UHGraph ) | 
						
							| 7 | 1 2 3 4 5 6 | uhgrspansubgr | ⊢ ( 𝜑  →  𝑆  SubGraph  𝐺 ) | 
						
							| 8 |  | subuhgr | ⊢ ( ( 𝐺  ∈  UHGraph  ∧  𝑆  SubGraph  𝐺 )  →  𝑆  ∈  UHGraph ) | 
						
							| 9 | 6 7 8 | syl2anc | ⊢ ( 𝜑  →  𝑆  ∈  UHGraph ) |