Metamath Proof Explorer


Theorem uhgrspan

Description: A spanning subgraph S of a hypergraph G is a hypergraph. (Contributed by AV, 11-Oct-2020) (Proof shortened by AV, 18-Nov-2020)

Ref Expression
Hypotheses uhgrspan.v V=VtxG
uhgrspan.e E=iEdgG
uhgrspan.s φSW
uhgrspan.q φVtxS=V
uhgrspan.r φiEdgS=EA
uhgrspan.g φGUHGraph
Assertion uhgrspan φSUHGraph

Proof

Step Hyp Ref Expression
1 uhgrspan.v V=VtxG
2 uhgrspan.e E=iEdgG
3 uhgrspan.s φSW
4 uhgrspan.q φVtxS=V
5 uhgrspan.r φiEdgS=EA
6 uhgrspan.g φGUHGraph
7 1 2 3 4 5 6 uhgrspansubgr φSSubGraphG
8 subuhgr GUHGraphSSubGraphGSUHGraph
9 6 7 8 syl2anc φSUHGraph