Description: A subgraph of a hypergraph is a hypergraph. (Contributed by AV, 16-Nov-2020) (Proof shortened by AV, 21-Nov-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | subuhgr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |
|
2 | eqid | |
|
3 | eqid | |
|
4 | eqid | |
|
5 | eqid | |
|
6 | 1 2 3 4 5 | subgrprop2 | |
7 | subgruhgrfun | |
|
8 | 7 | ancoms | |
9 | 8 | adantl | |
10 | 9 | funfnd | |
11 | simplrr | |
|
12 | simplrl | |
|
13 | simpr | |
|
14 | 1 3 11 12 13 | subgruhgredgd | |
15 | 14 | ralrimiva | |
16 | fnfvrnss | |
|
17 | 10 15 16 | syl2anc | |
18 | df-f | |
|
19 | 10 17 18 | sylanbrc | |
20 | subgrv | |
|
21 | 1 3 | isuhgr | |
22 | 21 | adantr | |
23 | 20 22 | syl | |
24 | 23 | adantr | |
25 | 24 | adantl | |
26 | 19 25 | mpbird | |
27 | 26 | ex | |
28 | 6 27 | syl | |
29 | 28 | anabsi8 | |