Metamath Proof Explorer


Theorem subuhgr

Description: A subgraph of a hypergraph is a hypergraph. (Contributed by AV, 16-Nov-2020) (Proof shortened by AV, 21-Nov-2020)

Ref Expression
Assertion subuhgr GUHGraphSSubGraphGSUHGraph

Proof

Step Hyp Ref Expression
1 eqid VtxS=VtxS
2 eqid VtxG=VtxG
3 eqid iEdgS=iEdgS
4 eqid iEdgG=iEdgG
5 eqid EdgS=EdgS
6 1 2 3 4 5 subgrprop2 SSubGraphGVtxSVtxGiEdgSiEdgGEdgS𝒫VtxS
7 subgruhgrfun GUHGraphSSubGraphGFuniEdgS
8 7 ancoms SSubGraphGGUHGraphFuniEdgS
9 8 adantl VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSSSubGraphGGUHGraphFuniEdgS
10 9 funfnd VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSSSubGraphGGUHGraphiEdgSFndomiEdgS
11 simplrr VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSSSubGraphGGUHGraphxdomiEdgSGUHGraph
12 simplrl VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSSSubGraphGGUHGraphxdomiEdgSSSubGraphG
13 simpr VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSSSubGraphGGUHGraphxdomiEdgSxdomiEdgS
14 1 3 11 12 13 subgruhgredgd VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSSSubGraphGGUHGraphxdomiEdgSiEdgSx𝒫VtxS
15 14 ralrimiva VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSSSubGraphGGUHGraphxdomiEdgSiEdgSx𝒫VtxS
16 fnfvrnss iEdgSFndomiEdgSxdomiEdgSiEdgSx𝒫VtxSraniEdgS𝒫VtxS
17 10 15 16 syl2anc VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSSSubGraphGGUHGraphraniEdgS𝒫VtxS
18 df-f iEdgS:domiEdgS𝒫VtxSiEdgSFndomiEdgSraniEdgS𝒫VtxS
19 10 17 18 sylanbrc VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSSSubGraphGGUHGraphiEdgS:domiEdgS𝒫VtxS
20 subgrv SSubGraphGSVGV
21 1 3 isuhgr SVSUHGraphiEdgS:domiEdgS𝒫VtxS
22 21 adantr SVGVSUHGraphiEdgS:domiEdgS𝒫VtxS
23 20 22 syl SSubGraphGSUHGraphiEdgS:domiEdgS𝒫VtxS
24 23 adantr SSubGraphGGUHGraphSUHGraphiEdgS:domiEdgS𝒫VtxS
25 24 adantl VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSSSubGraphGGUHGraphSUHGraphiEdgS:domiEdgS𝒫VtxS
26 19 25 mpbird VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSSSubGraphGGUHGraphSUHGraph
27 26 ex VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSSSubGraphGGUHGraphSUHGraph
28 6 27 syl SSubGraphGSSubGraphGGUHGraphSUHGraph
29 28 anabsi8 GUHGraphSSubGraphGSUHGraph