| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subgruhgredgd.v |
|
| 2 |
|
subgruhgredgd.i |
|
| 3 |
|
subgruhgredgd.g |
|
| 4 |
|
subgruhgredgd.s |
|
| 5 |
|
subgruhgredgd.x |
|
| 6 |
|
eqid |
|
| 7 |
|
eqid |
|
| 8 |
|
eqid |
|
| 9 |
1 6 2 7 8
|
subgrprop2 |
|
| 10 |
4 9
|
syl |
|
| 11 |
|
simpr3 |
|
| 12 |
|
subgruhgrfun |
|
| 13 |
3 4 12
|
syl2anc |
|
| 14 |
2
|
dmeqi |
|
| 15 |
5 14
|
eleqtrdi |
|
| 16 |
13 15
|
jca |
|
| 17 |
16
|
adantr |
|
| 18 |
2
|
fveq1i |
|
| 19 |
|
fvelrn |
|
| 20 |
18 19
|
eqeltrid |
|
| 21 |
17 20
|
syl |
|
| 22 |
|
edgval |
|
| 23 |
21 22
|
eleqtrrdi |
|
| 24 |
11 23
|
sseldd |
|
| 25 |
7
|
uhgrfun |
|
| 26 |
3 25
|
syl |
|
| 27 |
26
|
adantr |
|
| 28 |
|
simpr2 |
|
| 29 |
5
|
adantr |
|
| 30 |
|
funssfv |
|
| 31 |
30
|
eqcomd |
|
| 32 |
27 28 29 31
|
syl3anc |
|
| 33 |
3
|
adantr |
|
| 34 |
26
|
funfnd |
|
| 35 |
34
|
adantr |
|
| 36 |
|
subgreldmiedg |
|
| 37 |
4 15 36
|
syl2anc |
|
| 38 |
37
|
adantr |
|
| 39 |
7
|
uhgrn0 |
|
| 40 |
33 35 38 39
|
syl3anc |
|
| 41 |
32 40
|
eqnetrd |
|
| 42 |
|
eldifsn |
|
| 43 |
24 41 42
|
sylanbrc |
|
| 44 |
10 43
|
mpdan |
|