Metamath Proof Explorer


Theorem subgreldmiedg

Description: An element of the domain of the edge function of a subgraph is an element of the domain of the edge function of the supergraph. (Contributed by AV, 20-Nov-2020)

Ref Expression
Assertion subgreldmiedg S SubGraph G X dom iEdg S X dom iEdg G

Proof

Step Hyp Ref Expression
1 eqid Vtx S = Vtx S
2 eqid Vtx G = Vtx G
3 eqid iEdg S = iEdg S
4 eqid iEdg G = iEdg G
5 eqid Edg S = Edg S
6 1 2 3 4 5 subgrprop2 S SubGraph G Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S
7 dmss iEdg S iEdg G dom iEdg S dom iEdg G
8 7 3ad2ant2 Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S dom iEdg S dom iEdg G
9 8 sseld Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S X dom iEdg S X dom iEdg G
10 6 9 syl S SubGraph G X dom iEdg S X dom iEdg G
11 10 imp S SubGraph G X dom iEdg S X dom iEdg G