Metamath Proof Explorer


Theorem subgreldmiedg

Description: An element of the domain of the edge function of a subgraph is an element of the domain of the edge function of the supergraph. (Contributed by AV, 20-Nov-2020)

Ref Expression
Assertion subgreldmiedg SSubGraphGXdomiEdgSXdomiEdgG

Proof

Step Hyp Ref Expression
1 eqid VtxS=VtxS
2 eqid VtxG=VtxG
3 eqid iEdgS=iEdgS
4 eqid iEdgG=iEdgG
5 eqid EdgS=EdgS
6 1 2 3 4 5 subgrprop2 SSubGraphGVtxSVtxGiEdgSiEdgGEdgS𝒫VtxS
7 dmss iEdgSiEdgGdomiEdgSdomiEdgG
8 7 3ad2ant2 VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSdomiEdgSdomiEdgG
9 8 sseld VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSXdomiEdgSXdomiEdgG
10 6 9 syl SSubGraphGXdomiEdgSXdomiEdgG
11 10 imp SSubGraphGXdomiEdgSXdomiEdgG