| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subgruhgredgd.v |
|- V = ( Vtx ` S ) |
| 2 |
|
subgruhgredgd.i |
|- I = ( iEdg ` S ) |
| 3 |
|
subgruhgredgd.g |
|- ( ph -> G e. UHGraph ) |
| 4 |
|
subgruhgredgd.s |
|- ( ph -> S SubGraph G ) |
| 5 |
|
subgruhgredgd.x |
|- ( ph -> X e. dom I ) |
| 6 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 7 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
| 8 |
|
eqid |
|- ( Edg ` S ) = ( Edg ` S ) |
| 9 |
1 6 2 7 8
|
subgrprop2 |
|- ( S SubGraph G -> ( V C_ ( Vtx ` G ) /\ I C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P V ) ) |
| 10 |
4 9
|
syl |
|- ( ph -> ( V C_ ( Vtx ` G ) /\ I C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P V ) ) |
| 11 |
|
simpr3 |
|- ( ( ph /\ ( V C_ ( Vtx ` G ) /\ I C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P V ) ) -> ( Edg ` S ) C_ ~P V ) |
| 12 |
|
subgruhgrfun |
|- ( ( G e. UHGraph /\ S SubGraph G ) -> Fun ( iEdg ` S ) ) |
| 13 |
3 4 12
|
syl2anc |
|- ( ph -> Fun ( iEdg ` S ) ) |
| 14 |
2
|
dmeqi |
|- dom I = dom ( iEdg ` S ) |
| 15 |
5 14
|
eleqtrdi |
|- ( ph -> X e. dom ( iEdg ` S ) ) |
| 16 |
13 15
|
jca |
|- ( ph -> ( Fun ( iEdg ` S ) /\ X e. dom ( iEdg ` S ) ) ) |
| 17 |
16
|
adantr |
|- ( ( ph /\ ( V C_ ( Vtx ` G ) /\ I C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P V ) ) -> ( Fun ( iEdg ` S ) /\ X e. dom ( iEdg ` S ) ) ) |
| 18 |
2
|
fveq1i |
|- ( I ` X ) = ( ( iEdg ` S ) ` X ) |
| 19 |
|
fvelrn |
|- ( ( Fun ( iEdg ` S ) /\ X e. dom ( iEdg ` S ) ) -> ( ( iEdg ` S ) ` X ) e. ran ( iEdg ` S ) ) |
| 20 |
18 19
|
eqeltrid |
|- ( ( Fun ( iEdg ` S ) /\ X e. dom ( iEdg ` S ) ) -> ( I ` X ) e. ran ( iEdg ` S ) ) |
| 21 |
17 20
|
syl |
|- ( ( ph /\ ( V C_ ( Vtx ` G ) /\ I C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P V ) ) -> ( I ` X ) e. ran ( iEdg ` S ) ) |
| 22 |
|
edgval |
|- ( Edg ` S ) = ran ( iEdg ` S ) |
| 23 |
21 22
|
eleqtrrdi |
|- ( ( ph /\ ( V C_ ( Vtx ` G ) /\ I C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P V ) ) -> ( I ` X ) e. ( Edg ` S ) ) |
| 24 |
11 23
|
sseldd |
|- ( ( ph /\ ( V C_ ( Vtx ` G ) /\ I C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P V ) ) -> ( I ` X ) e. ~P V ) |
| 25 |
7
|
uhgrfun |
|- ( G e. UHGraph -> Fun ( iEdg ` G ) ) |
| 26 |
3 25
|
syl |
|- ( ph -> Fun ( iEdg ` G ) ) |
| 27 |
26
|
adantr |
|- ( ( ph /\ ( V C_ ( Vtx ` G ) /\ I C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P V ) ) -> Fun ( iEdg ` G ) ) |
| 28 |
|
simpr2 |
|- ( ( ph /\ ( V C_ ( Vtx ` G ) /\ I C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P V ) ) -> I C_ ( iEdg ` G ) ) |
| 29 |
5
|
adantr |
|- ( ( ph /\ ( V C_ ( Vtx ` G ) /\ I C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P V ) ) -> X e. dom I ) |
| 30 |
|
funssfv |
|- ( ( Fun ( iEdg ` G ) /\ I C_ ( iEdg ` G ) /\ X e. dom I ) -> ( ( iEdg ` G ) ` X ) = ( I ` X ) ) |
| 31 |
30
|
eqcomd |
|- ( ( Fun ( iEdg ` G ) /\ I C_ ( iEdg ` G ) /\ X e. dom I ) -> ( I ` X ) = ( ( iEdg ` G ) ` X ) ) |
| 32 |
27 28 29 31
|
syl3anc |
|- ( ( ph /\ ( V C_ ( Vtx ` G ) /\ I C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P V ) ) -> ( I ` X ) = ( ( iEdg ` G ) ` X ) ) |
| 33 |
3
|
adantr |
|- ( ( ph /\ ( V C_ ( Vtx ` G ) /\ I C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P V ) ) -> G e. UHGraph ) |
| 34 |
26
|
funfnd |
|- ( ph -> ( iEdg ` G ) Fn dom ( iEdg ` G ) ) |
| 35 |
34
|
adantr |
|- ( ( ph /\ ( V C_ ( Vtx ` G ) /\ I C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P V ) ) -> ( iEdg ` G ) Fn dom ( iEdg ` G ) ) |
| 36 |
|
subgreldmiedg |
|- ( ( S SubGraph G /\ X e. dom ( iEdg ` S ) ) -> X e. dom ( iEdg ` G ) ) |
| 37 |
4 15 36
|
syl2anc |
|- ( ph -> X e. dom ( iEdg ` G ) ) |
| 38 |
37
|
adantr |
|- ( ( ph /\ ( V C_ ( Vtx ` G ) /\ I C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P V ) ) -> X e. dom ( iEdg ` G ) ) |
| 39 |
7
|
uhgrn0 |
|- ( ( G e. UHGraph /\ ( iEdg ` G ) Fn dom ( iEdg ` G ) /\ X e. dom ( iEdg ` G ) ) -> ( ( iEdg ` G ) ` X ) =/= (/) ) |
| 40 |
33 35 38 39
|
syl3anc |
|- ( ( ph /\ ( V C_ ( Vtx ` G ) /\ I C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P V ) ) -> ( ( iEdg ` G ) ` X ) =/= (/) ) |
| 41 |
32 40
|
eqnetrd |
|- ( ( ph /\ ( V C_ ( Vtx ` G ) /\ I C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P V ) ) -> ( I ` X ) =/= (/) ) |
| 42 |
|
eldifsn |
|- ( ( I ` X ) e. ( ~P V \ { (/) } ) <-> ( ( I ` X ) e. ~P V /\ ( I ` X ) =/= (/) ) ) |
| 43 |
24 41 42
|
sylanbrc |
|- ( ( ph /\ ( V C_ ( Vtx ` G ) /\ I C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P V ) ) -> ( I ` X ) e. ( ~P V \ { (/) } ) ) |
| 44 |
10 43
|
mpdan |
|- ( ph -> ( I ` X ) e. ( ~P V \ { (/) } ) ) |