| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subumgredg2.v |
|
| 2 |
|
subumgredg2.i |
|
| 3 |
|
fveqeq2 |
|
| 4 |
|
umgruhgr |
|
| 5 |
4
|
3ad2ant2 |
|
| 6 |
|
simp1 |
|
| 7 |
|
simp3 |
|
| 8 |
1 2 5 6 7
|
subgruhgredgd |
|
| 9 |
|
eqid |
|
| 10 |
9
|
uhgrfun |
|
| 11 |
4 10
|
syl |
|
| 12 |
11
|
3ad2ant2 |
|
| 13 |
|
eqid |
|
| 14 |
|
eqid |
|
| 15 |
|
eqid |
|
| 16 |
13 14 2 9 15
|
subgrprop2 |
|
| 17 |
16
|
simp2d |
|
| 18 |
17
|
3ad2ant1 |
|
| 19 |
|
funssfv |
|
| 20 |
19
|
eqcomd |
|
| 21 |
12 18 7 20
|
syl3anc |
|
| 22 |
21
|
fveq2d |
|
| 23 |
|
simp2 |
|
| 24 |
2
|
dmeqi |
|
| 25 |
24
|
eleq2i |
|
| 26 |
|
subgreldmiedg |
|
| 27 |
26
|
ex |
|
| 28 |
25 27
|
biimtrid |
|
| 29 |
28
|
a1d |
|
| 30 |
29
|
3imp |
|
| 31 |
14 9
|
umgredg2 |
|
| 32 |
23 30 31
|
syl2anc |
|
| 33 |
22 32
|
eqtrd |
|
| 34 |
3 8 33
|
elrabd |
|
| 35 |
|
prprrab |
|
| 36 |
34 35
|
eleqtrdi |
|