| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subumgredg2.v |
⊢ 𝑉 = ( Vtx ‘ 𝑆 ) |
| 2 |
|
subumgredg2.i |
⊢ 𝐼 = ( iEdg ‘ 𝑆 ) |
| 3 |
|
fveqeq2 |
⊢ ( 𝑒 = ( 𝐼 ‘ 𝑋 ) → ( ( ♯ ‘ 𝑒 ) = 2 ↔ ( ♯ ‘ ( 𝐼 ‘ 𝑋 ) ) = 2 ) ) |
| 4 |
|
umgruhgr |
⊢ ( 𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph ) |
| 5 |
4
|
3ad2ant2 |
⊢ ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼 ) → 𝐺 ∈ UHGraph ) |
| 6 |
|
simp1 |
⊢ ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼 ) → 𝑆 SubGraph 𝐺 ) |
| 7 |
|
simp3 |
⊢ ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼 ) → 𝑋 ∈ dom 𝐼 ) |
| 8 |
1 2 5 6 7
|
subgruhgredgd |
⊢ ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼 ) → ( 𝐼 ‘ 𝑋 ) ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ) |
| 9 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
| 10 |
9
|
uhgrfun |
⊢ ( 𝐺 ∈ UHGraph → Fun ( iEdg ‘ 𝐺 ) ) |
| 11 |
4 10
|
syl |
⊢ ( 𝐺 ∈ UMGraph → Fun ( iEdg ‘ 𝐺 ) ) |
| 12 |
11
|
3ad2ant2 |
⊢ ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼 ) → Fun ( iEdg ‘ 𝐺 ) ) |
| 13 |
|
eqid |
⊢ ( Vtx ‘ 𝑆 ) = ( Vtx ‘ 𝑆 ) |
| 14 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
| 15 |
|
eqid |
⊢ ( Edg ‘ 𝑆 ) = ( Edg ‘ 𝑆 ) |
| 16 |
13 14 2 9 15
|
subgrprop2 |
⊢ ( 𝑆 SubGraph 𝐺 → ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ 𝐼 ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ) |
| 17 |
16
|
simp2d |
⊢ ( 𝑆 SubGraph 𝐺 → 𝐼 ⊆ ( iEdg ‘ 𝐺 ) ) |
| 18 |
17
|
3ad2ant1 |
⊢ ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼 ) → 𝐼 ⊆ ( iEdg ‘ 𝐺 ) ) |
| 19 |
|
funssfv |
⊢ ( ( Fun ( iEdg ‘ 𝐺 ) ∧ 𝐼 ⊆ ( iEdg ‘ 𝐺 ) ∧ 𝑋 ∈ dom 𝐼 ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑋 ) = ( 𝐼 ‘ 𝑋 ) ) |
| 20 |
19
|
eqcomd |
⊢ ( ( Fun ( iEdg ‘ 𝐺 ) ∧ 𝐼 ⊆ ( iEdg ‘ 𝐺 ) ∧ 𝑋 ∈ dom 𝐼 ) → ( 𝐼 ‘ 𝑋 ) = ( ( iEdg ‘ 𝐺 ) ‘ 𝑋 ) ) |
| 21 |
12 18 7 20
|
syl3anc |
⊢ ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼 ) → ( 𝐼 ‘ 𝑋 ) = ( ( iEdg ‘ 𝐺 ) ‘ 𝑋 ) ) |
| 22 |
21
|
fveq2d |
⊢ ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼 ) → ( ♯ ‘ ( 𝐼 ‘ 𝑋 ) ) = ( ♯ ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑋 ) ) ) |
| 23 |
|
simp2 |
⊢ ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼 ) → 𝐺 ∈ UMGraph ) |
| 24 |
2
|
dmeqi |
⊢ dom 𝐼 = dom ( iEdg ‘ 𝑆 ) |
| 25 |
24
|
eleq2i |
⊢ ( 𝑋 ∈ dom 𝐼 ↔ 𝑋 ∈ dom ( iEdg ‘ 𝑆 ) ) |
| 26 |
|
subgreldmiedg |
⊢ ( ( 𝑆 SubGraph 𝐺 ∧ 𝑋 ∈ dom ( iEdg ‘ 𝑆 ) ) → 𝑋 ∈ dom ( iEdg ‘ 𝐺 ) ) |
| 27 |
26
|
ex |
⊢ ( 𝑆 SubGraph 𝐺 → ( 𝑋 ∈ dom ( iEdg ‘ 𝑆 ) → 𝑋 ∈ dom ( iEdg ‘ 𝐺 ) ) ) |
| 28 |
25 27
|
biimtrid |
⊢ ( 𝑆 SubGraph 𝐺 → ( 𝑋 ∈ dom 𝐼 → 𝑋 ∈ dom ( iEdg ‘ 𝐺 ) ) ) |
| 29 |
28
|
a1d |
⊢ ( 𝑆 SubGraph 𝐺 → ( 𝐺 ∈ UMGraph → ( 𝑋 ∈ dom 𝐼 → 𝑋 ∈ dom ( iEdg ‘ 𝐺 ) ) ) ) |
| 30 |
29
|
3imp |
⊢ ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼 ) → 𝑋 ∈ dom ( iEdg ‘ 𝐺 ) ) |
| 31 |
14 9
|
umgredg2 |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ♯ ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑋 ) ) = 2 ) |
| 32 |
23 30 31
|
syl2anc |
⊢ ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼 ) → ( ♯ ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑋 ) ) = 2 ) |
| 33 |
22 32
|
eqtrd |
⊢ ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼 ) → ( ♯ ‘ ( 𝐼 ‘ 𝑋 ) ) = 2 ) |
| 34 |
3 8 33
|
elrabd |
⊢ ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼 ) → ( 𝐼 ‘ 𝑋 ) ∈ { 𝑒 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ) |
| 35 |
|
prprrab |
⊢ { 𝑒 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑒 ) = 2 } = { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } |
| 36 |
34 35
|
eleqtrdi |
⊢ ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼 ) → ( 𝐼 ‘ 𝑋 ) ∈ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } ) |