Metamath Proof Explorer


Theorem subumgredg2

Description: An edge of a subgraph of a multigraph connects exactly two different vertices. (Contributed by AV, 26-Nov-2020)

Ref Expression
Hypotheses subumgredg2.v 𝑉 = ( Vtx ‘ 𝑆 )
subumgredg2.i 𝐼 = ( iEdg ‘ 𝑆 )
Assertion subumgredg2 ( ( 𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼 ) → ( 𝐼𝑋 ) ∈ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } )

Proof

Step Hyp Ref Expression
1 subumgredg2.v 𝑉 = ( Vtx ‘ 𝑆 )
2 subumgredg2.i 𝐼 = ( iEdg ‘ 𝑆 )
3 fveqeq2 ( 𝑒 = ( 𝐼𝑋 ) → ( ( ♯ ‘ 𝑒 ) = 2 ↔ ( ♯ ‘ ( 𝐼𝑋 ) ) = 2 ) )
4 umgruhgr ( 𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph )
5 4 3ad2ant2 ( ( 𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼 ) → 𝐺 ∈ UHGraph )
6 simp1 ( ( 𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼 ) → 𝑆 SubGraph 𝐺 )
7 simp3 ( ( 𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼 ) → 𝑋 ∈ dom 𝐼 )
8 1 2 5 6 7 subgruhgredgd ( ( 𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼 ) → ( 𝐼𝑋 ) ∈ ( 𝒫 𝑉 ∖ { ∅ } ) )
9 eqid ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 )
10 9 uhgrfun ( 𝐺 ∈ UHGraph → Fun ( iEdg ‘ 𝐺 ) )
11 4 10 syl ( 𝐺 ∈ UMGraph → Fun ( iEdg ‘ 𝐺 ) )
12 11 3ad2ant2 ( ( 𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼 ) → Fun ( iEdg ‘ 𝐺 ) )
13 eqid ( Vtx ‘ 𝑆 ) = ( Vtx ‘ 𝑆 )
14 eqid ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 )
15 eqid ( Edg ‘ 𝑆 ) = ( Edg ‘ 𝑆 )
16 13 14 2 9 15 subgrprop2 ( 𝑆 SubGraph 𝐺 → ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ 𝐼 ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) )
17 16 simp2d ( 𝑆 SubGraph 𝐺𝐼 ⊆ ( iEdg ‘ 𝐺 ) )
18 17 3ad2ant1 ( ( 𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼 ) → 𝐼 ⊆ ( iEdg ‘ 𝐺 ) )
19 funssfv ( ( Fun ( iEdg ‘ 𝐺 ) ∧ 𝐼 ⊆ ( iEdg ‘ 𝐺 ) ∧ 𝑋 ∈ dom 𝐼 ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑋 ) = ( 𝐼𝑋 ) )
20 19 eqcomd ( ( Fun ( iEdg ‘ 𝐺 ) ∧ 𝐼 ⊆ ( iEdg ‘ 𝐺 ) ∧ 𝑋 ∈ dom 𝐼 ) → ( 𝐼𝑋 ) = ( ( iEdg ‘ 𝐺 ) ‘ 𝑋 ) )
21 12 18 7 20 syl3anc ( ( 𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼 ) → ( 𝐼𝑋 ) = ( ( iEdg ‘ 𝐺 ) ‘ 𝑋 ) )
22 21 fveq2d ( ( 𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼 ) → ( ♯ ‘ ( 𝐼𝑋 ) ) = ( ♯ ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑋 ) ) )
23 simp2 ( ( 𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼 ) → 𝐺 ∈ UMGraph )
24 2 dmeqi dom 𝐼 = dom ( iEdg ‘ 𝑆 )
25 24 eleq2i ( 𝑋 ∈ dom 𝐼𝑋 ∈ dom ( iEdg ‘ 𝑆 ) )
26 subgreldmiedg ( ( 𝑆 SubGraph 𝐺𝑋 ∈ dom ( iEdg ‘ 𝑆 ) ) → 𝑋 ∈ dom ( iEdg ‘ 𝐺 ) )
27 26 ex ( 𝑆 SubGraph 𝐺 → ( 𝑋 ∈ dom ( iEdg ‘ 𝑆 ) → 𝑋 ∈ dom ( iEdg ‘ 𝐺 ) ) )
28 25 27 syl5bi ( 𝑆 SubGraph 𝐺 → ( 𝑋 ∈ dom 𝐼𝑋 ∈ dom ( iEdg ‘ 𝐺 ) ) )
29 28 a1d ( 𝑆 SubGraph 𝐺 → ( 𝐺 ∈ UMGraph → ( 𝑋 ∈ dom 𝐼𝑋 ∈ dom ( iEdg ‘ 𝐺 ) ) ) )
30 29 3imp ( ( 𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼 ) → 𝑋 ∈ dom ( iEdg ‘ 𝐺 ) )
31 14 9 umgredg2 ( ( 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ♯ ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑋 ) ) = 2 )
32 23 30 31 syl2anc ( ( 𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼 ) → ( ♯ ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑋 ) ) = 2 )
33 22 32 eqtrd ( ( 𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼 ) → ( ♯ ‘ ( 𝐼𝑋 ) ) = 2 )
34 3 8 33 elrabd ( ( 𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼 ) → ( 𝐼𝑋 ) ∈ { 𝑒 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑒 ) = 2 } )
35 prprrab { 𝑒 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑒 ) = 2 } = { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 }
36 34 35 eleqtrdi ( ( 𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼 ) → ( 𝐼𝑋 ) ∈ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } )