| Step | Hyp | Ref | Expression | 
						
							| 1 |  | umgrnloopv.e | ⊢ 𝐸  =  ( iEdg ‘ 𝐺 ) | 
						
							| 2 |  | prnzg | ⊢ ( 𝑀  ∈  𝑊  →  { 𝑀 ,  𝑁 }  ≠  ∅ ) | 
						
							| 3 | 2 | adantl | ⊢ ( ( ( 𝐸 ‘ 𝑋 )  =  { 𝑀 ,  𝑁 }  ∧  𝑀  ∈  𝑊 )  →  { 𝑀 ,  𝑁 }  ≠  ∅ ) | 
						
							| 4 |  | neeq1 | ⊢ ( ( 𝐸 ‘ 𝑋 )  =  { 𝑀 ,  𝑁 }  →  ( ( 𝐸 ‘ 𝑋 )  ≠  ∅  ↔  { 𝑀 ,  𝑁 }  ≠  ∅ ) ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( ( 𝐸 ‘ 𝑋 )  =  { 𝑀 ,  𝑁 }  ∧  𝑀  ∈  𝑊 )  →  ( ( 𝐸 ‘ 𝑋 )  ≠  ∅  ↔  { 𝑀 ,  𝑁 }  ≠  ∅ ) ) | 
						
							| 6 | 3 5 | mpbird | ⊢ ( ( ( 𝐸 ‘ 𝑋 )  =  { 𝑀 ,  𝑁 }  ∧  𝑀  ∈  𝑊 )  →  ( 𝐸 ‘ 𝑋 )  ≠  ∅ ) | 
						
							| 7 |  | fvfundmfvn0 | ⊢ ( ( 𝐸 ‘ 𝑋 )  ≠  ∅  →  ( 𝑋  ∈  dom  𝐸  ∧  Fun  ( 𝐸  ↾  { 𝑋 } ) ) ) | 
						
							| 8 | 6 7 | syl | ⊢ ( ( ( 𝐸 ‘ 𝑋 )  =  { 𝑀 ,  𝑁 }  ∧  𝑀  ∈  𝑊 )  →  ( 𝑋  ∈  dom  𝐸  ∧  Fun  ( 𝐸  ↾  { 𝑋 } ) ) ) | 
						
							| 9 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 10 | 9 1 | umgredg2 | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  𝑋  ∈  dom  𝐸 )  →  ( ♯ ‘ ( 𝐸 ‘ 𝑋 ) )  =  2 ) | 
						
							| 11 |  | fveqeq2 | ⊢ ( ( 𝐸 ‘ 𝑋 )  =  { 𝑀 ,  𝑁 }  →  ( ( ♯ ‘ ( 𝐸 ‘ 𝑋 ) )  =  2  ↔  ( ♯ ‘ { 𝑀 ,  𝑁 } )  =  2 ) ) | 
						
							| 12 |  | eqid | ⊢ { 𝑀 ,  𝑁 }  =  { 𝑀 ,  𝑁 } | 
						
							| 13 | 12 | hashprdifel | ⊢ ( ( ♯ ‘ { 𝑀 ,  𝑁 } )  =  2  →  ( 𝑀  ∈  { 𝑀 ,  𝑁 }  ∧  𝑁  ∈  { 𝑀 ,  𝑁 }  ∧  𝑀  ≠  𝑁 ) ) | 
						
							| 14 | 13 | simp3d | ⊢ ( ( ♯ ‘ { 𝑀 ,  𝑁 } )  =  2  →  𝑀  ≠  𝑁 ) | 
						
							| 15 | 11 14 | biimtrdi | ⊢ ( ( 𝐸 ‘ 𝑋 )  =  { 𝑀 ,  𝑁 }  →  ( ( ♯ ‘ ( 𝐸 ‘ 𝑋 ) )  =  2  →  𝑀  ≠  𝑁 ) ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( ( 𝐸 ‘ 𝑋 )  =  { 𝑀 ,  𝑁 }  ∧  𝑀  ∈  𝑊 )  →  ( ( ♯ ‘ ( 𝐸 ‘ 𝑋 ) )  =  2  →  𝑀  ≠  𝑁 ) ) | 
						
							| 17 | 10 16 | syl5com | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  𝑋  ∈  dom  𝐸 )  →  ( ( ( 𝐸 ‘ 𝑋 )  =  { 𝑀 ,  𝑁 }  ∧  𝑀  ∈  𝑊 )  →  𝑀  ≠  𝑁 ) ) | 
						
							| 18 | 17 | expcom | ⊢ ( 𝑋  ∈  dom  𝐸  →  ( 𝐺  ∈  UMGraph  →  ( ( ( 𝐸 ‘ 𝑋 )  =  { 𝑀 ,  𝑁 }  ∧  𝑀  ∈  𝑊 )  →  𝑀  ≠  𝑁 ) ) ) | 
						
							| 19 | 18 | com23 | ⊢ ( 𝑋  ∈  dom  𝐸  →  ( ( ( 𝐸 ‘ 𝑋 )  =  { 𝑀 ,  𝑁 }  ∧  𝑀  ∈  𝑊 )  →  ( 𝐺  ∈  UMGraph  →  𝑀  ≠  𝑁 ) ) ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( 𝑋  ∈  dom  𝐸  ∧  Fun  ( 𝐸  ↾  { 𝑋 } ) )  →  ( ( ( 𝐸 ‘ 𝑋 )  =  { 𝑀 ,  𝑁 }  ∧  𝑀  ∈  𝑊 )  →  ( 𝐺  ∈  UMGraph  →  𝑀  ≠  𝑁 ) ) ) | 
						
							| 21 | 8 20 | mpcom | ⊢ ( ( ( 𝐸 ‘ 𝑋 )  =  { 𝑀 ,  𝑁 }  ∧  𝑀  ∈  𝑊 )  →  ( 𝐺  ∈  UMGraph  →  𝑀  ≠  𝑁 ) ) | 
						
							| 22 | 21 | ex | ⊢ ( ( 𝐸 ‘ 𝑋 )  =  { 𝑀 ,  𝑁 }  →  ( 𝑀  ∈  𝑊  →  ( 𝐺  ∈  UMGraph  →  𝑀  ≠  𝑁 ) ) ) | 
						
							| 23 | 22 | com13 | ⊢ ( 𝐺  ∈  UMGraph  →  ( 𝑀  ∈  𝑊  →  ( ( 𝐸 ‘ 𝑋 )  =  { 𝑀 ,  𝑁 }  →  𝑀  ≠  𝑁 ) ) ) | 
						
							| 24 | 23 | imp | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  𝑀  ∈  𝑊 )  →  ( ( 𝐸 ‘ 𝑋 )  =  { 𝑀 ,  𝑁 }  →  𝑀  ≠  𝑁 ) ) |