Metamath Proof Explorer
		
		
		
		Description:  The union of an elementwise intersection is a subset of the underlying
       set.  (Contributed by Glauco Siliprandi, 26-Jun-2021)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | unirestss.1 | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
					
						|  |  | unirestss.2 | ⊢ ( 𝜑  →  𝐵  ∈  𝑊 ) | 
				
					|  | Assertion | unirestss | ⊢  ( 𝜑  →  ∪  ( 𝐴  ↾t  𝐵 )  ⊆  ∪  𝐴 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | unirestss.1 | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 2 |  | unirestss.2 | ⊢ ( 𝜑  →  𝐵  ∈  𝑊 ) | 
						
							| 3 | 1 2 | restuni6 | ⊢ ( 𝜑  →  ∪  ( 𝐴  ↾t  𝐵 )  =  ( ∪  𝐴  ∩  𝐵 ) ) | 
						
							| 4 |  | inss1 | ⊢ ( ∪  𝐴  ∩  𝐵 )  ⊆  ∪  𝐴 | 
						
							| 5 | 3 4 | eqsstrdi | ⊢ ( 𝜑  →  ∪  ( 𝐴  ↾t  𝐵 )  ⊆  ∪  𝐴 ) |