Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Finite sets (cont.)
unirnffid
Metamath Proof Explorer
Description: The union of the range of a function from a finite set into the class of
finite sets is finite. Deduction form. (Contributed by David Moews , 1-May-2017)
Ref
Expression
Hypotheses
unirnffid.1
⊢ ( 𝜑 → 𝐹 : 𝑇 ⟶ Fin )
unirnffid.2
⊢ ( 𝜑 → 𝑇 ∈ Fin )
Assertion
unirnffid
⊢ ( 𝜑 → ∪ ran 𝐹 ∈ Fin )
Proof
Step
Hyp
Ref
Expression
1
unirnffid.1
⊢ ( 𝜑 → 𝐹 : 𝑇 ⟶ Fin )
2
unirnffid.2
⊢ ( 𝜑 → 𝑇 ∈ Fin )
3
1
ffnd
⊢ ( 𝜑 → 𝐹 Fn 𝑇 )
4
fnfi
⊢ ( ( 𝐹 Fn 𝑇 ∧ 𝑇 ∈ Fin ) → 𝐹 ∈ Fin )
5
3 2 4
syl2anc
⊢ ( 𝜑 → 𝐹 ∈ Fin )
6
rnfi
⊢ ( 𝐹 ∈ Fin → ran 𝐹 ∈ Fin )
7
5 6
syl
⊢ ( 𝜑 → ran 𝐹 ∈ Fin )
8
1
frnd
⊢ ( 𝜑 → ran 𝐹 ⊆ Fin )
9
unifi
⊢ ( ( ran 𝐹 ∈ Fin ∧ ran 𝐹 ⊆ Fin ) → ∪ ran 𝐹 ∈ Fin )
10
7 8 9
syl2anc
⊢ ( 𝜑 → ∪ ran 𝐹 ∈ Fin )