Description: The union of the range of a function from a finite set into the class of finite sets is finite. Deduction form. (Contributed by David Moews, 1-May-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | unirnffid.1 | |- ( ph -> F : T --> Fin ) |
|
unirnffid.2 | |- ( ph -> T e. Fin ) |
||
Assertion | unirnffid | |- ( ph -> U. ran F e. Fin ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unirnffid.1 | |- ( ph -> F : T --> Fin ) |
|
2 | unirnffid.2 | |- ( ph -> T e. Fin ) |
|
3 | 1 | ffnd | |- ( ph -> F Fn T ) |
4 | fnfi | |- ( ( F Fn T /\ T e. Fin ) -> F e. Fin ) |
|
5 | 3 2 4 | syl2anc | |- ( ph -> F e. Fin ) |
6 | rnfi | |- ( F e. Fin -> ran F e. Fin ) |
|
7 | 5 6 | syl | |- ( ph -> ran F e. Fin ) |
8 | 1 | frnd | |- ( ph -> ran F C_ Fin ) |
9 | unifi | |- ( ( ran F e. Fin /\ ran F C_ Fin ) -> U. ran F e. Fin ) |
|
10 | 7 8 9 | syl2anc | |- ( ph -> U. ran F e. Fin ) |