Metamath Proof Explorer


Theorem unirnffid

Description: The union of the range of a function from a finite set into the class of finite sets is finite. Deduction form. (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses unirnffid.1
|- ( ph -> F : T --> Fin )
unirnffid.2
|- ( ph -> T e. Fin )
Assertion unirnffid
|- ( ph -> U. ran F e. Fin )

Proof

Step Hyp Ref Expression
1 unirnffid.1
 |-  ( ph -> F : T --> Fin )
2 unirnffid.2
 |-  ( ph -> T e. Fin )
3 1 ffnd
 |-  ( ph -> F Fn T )
4 fnfi
 |-  ( ( F Fn T /\ T e. Fin ) -> F e. Fin )
5 3 2 4 syl2anc
 |-  ( ph -> F e. Fin )
6 rnfi
 |-  ( F e. Fin -> ran F e. Fin )
7 5 6 syl
 |-  ( ph -> ran F e. Fin )
8 1 frnd
 |-  ( ph -> ran F C_ Fin )
9 unifi
 |-  ( ( ran F e. Fin /\ ran F C_ Fin ) -> U. ran F e. Fin )
10 7 8 9 syl2anc
 |-  ( ph -> U. ran F e. Fin )