Metamath Proof Explorer


Theorem unitabl

Description: The group of units of a commutative ring is abelian. (Contributed by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses unitmulcl.1 𝑈 = ( Unit ‘ 𝑅 )
unitgrp.2 𝐺 = ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 )
Assertion unitabl ( 𝑅 ∈ CRing → 𝐺 ∈ Abel )

Proof

Step Hyp Ref Expression
1 unitmulcl.1 𝑈 = ( Unit ‘ 𝑅 )
2 unitgrp.2 𝐺 = ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 )
3 crngring ( 𝑅 ∈ CRing → 𝑅 ∈ Ring )
4 1 2 unitgrp ( 𝑅 ∈ Ring → 𝐺 ∈ Grp )
5 3 4 syl ( 𝑅 ∈ CRing → 𝐺 ∈ Grp )
6 eqid ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 )
7 6 crngmgp ( 𝑅 ∈ CRing → ( mulGrp ‘ 𝑅 ) ∈ CMnd )
8 grpmnd ( 𝐺 ∈ Grp → 𝐺 ∈ Mnd )
9 5 8 syl ( 𝑅 ∈ CRing → 𝐺 ∈ Mnd )
10 2 subcmn ( ( ( mulGrp ‘ 𝑅 ) ∈ CMnd ∧ 𝐺 ∈ Mnd ) → 𝐺 ∈ CMnd )
11 7 9 10 syl2anc ( 𝑅 ∈ CRing → 𝐺 ∈ CMnd )
12 isabl ( 𝐺 ∈ Abel ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd ) )
13 5 11 12 sylanbrc ( 𝑅 ∈ CRing → 𝐺 ∈ Abel )