Metamath Proof Explorer


Theorem unitabl

Description: The group of units of a commutative ring is abelian. (Contributed by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses unitmulcl.1
|- U = ( Unit ` R )
unitgrp.2
|- G = ( ( mulGrp ` R ) |`s U )
Assertion unitabl
|- ( R e. CRing -> G e. Abel )

Proof

Step Hyp Ref Expression
1 unitmulcl.1
 |-  U = ( Unit ` R )
2 unitgrp.2
 |-  G = ( ( mulGrp ` R ) |`s U )
3 crngring
 |-  ( R e. CRing -> R e. Ring )
4 1 2 unitgrp
 |-  ( R e. Ring -> G e. Grp )
5 3 4 syl
 |-  ( R e. CRing -> G e. Grp )
6 eqid
 |-  ( mulGrp ` R ) = ( mulGrp ` R )
7 6 crngmgp
 |-  ( R e. CRing -> ( mulGrp ` R ) e. CMnd )
8 grpmnd
 |-  ( G e. Grp -> G e. Mnd )
9 5 8 syl
 |-  ( R e. CRing -> G e. Mnd )
10 2 subcmn
 |-  ( ( ( mulGrp ` R ) e. CMnd /\ G e. Mnd ) -> G e. CMnd )
11 7 9 10 syl2anc
 |-  ( R e. CRing -> G e. CMnd )
12 isabl
 |-  ( G e. Abel <-> ( G e. Grp /\ G e. CMnd ) )
13 5 11 12 sylanbrc
 |-  ( R e. CRing -> G e. Abel )