Metamath Proof Explorer


Theorem unveldomd

Description: The universe is an element of the domain of the probability, the universe (entire probability space) being U. dom P in our construction. (Contributed by Thierry Arnoux, 22-Jan-2017)

Ref Expression
Hypothesis unveldomd.1 ( 𝜑𝑃 ∈ Prob )
Assertion unveldomd ( 𝜑 dom 𝑃 ∈ dom 𝑃 )

Proof

Step Hyp Ref Expression
1 unveldomd.1 ( 𝜑𝑃 ∈ Prob )
2 domprobsiga ( 𝑃 ∈ Prob → dom 𝑃 ran sigAlgebra )
3 sgon ( dom 𝑃 ran sigAlgebra → dom 𝑃 ∈ ( sigAlgebra ‘ dom 𝑃 ) )
4 baselsiga ( dom 𝑃 ∈ ( sigAlgebra ‘ dom 𝑃 ) → dom 𝑃 ∈ dom 𝑃 )
5 1 2 3 4 4syl ( 𝜑 dom 𝑃 ∈ dom 𝑃 )