Metamath Proof Explorer


Theorem usgredgop

Description: An edge of a simple graph as second component of an ordered pair. (Contributed by Alexander van der Vekens, 17-Aug-2017) (Proof shortened by Alexander van der Vekens, 16-Dec-2017) (Revised by AV, 15-Oct-2020)

Ref Expression
Assertion usgredgop ( ( 𝐺 ∈ USGraph ∧ 𝐸 = ( iEdg ‘ 𝐺 ) ∧ 𝑋 ∈ dom 𝐸 ) → ( ( 𝐸𝑋 ) = { 𝑀 , 𝑁 } ↔ ⟨ 𝑋 , { 𝑀 , 𝑁 } ⟩ ∈ 𝐸 ) )

Proof

Step Hyp Ref Expression
1 usgrfun ( 𝐺 ∈ USGraph → Fun ( iEdg ‘ 𝐺 ) )
2 funeq ( 𝐸 = ( iEdg ‘ 𝐺 ) → ( Fun 𝐸 ↔ Fun ( iEdg ‘ 𝐺 ) ) )
3 1 2 syl5ibrcom ( 𝐺 ∈ USGraph → ( 𝐸 = ( iEdg ‘ 𝐺 ) → Fun 𝐸 ) )
4 3 imp ( ( 𝐺 ∈ USGraph ∧ 𝐸 = ( iEdg ‘ 𝐺 ) ) → Fun 𝐸 )
5 funopfvb ( ( Fun 𝐸𝑋 ∈ dom 𝐸 ) → ( ( 𝐸𝑋 ) = { 𝑀 , 𝑁 } ↔ ⟨ 𝑋 , { 𝑀 , 𝑁 } ⟩ ∈ 𝐸 ) )
6 4 5 stoic3 ( ( 𝐺 ∈ USGraph ∧ 𝐸 = ( iEdg ‘ 𝐺 ) ∧ 𝑋 ∈ dom 𝐸 ) → ( ( 𝐸𝑋 ) = { 𝑀 , 𝑁 } ↔ ⟨ 𝑋 , { 𝑀 , 𝑁 } ⟩ ∈ 𝐸 ) )