Database GRAPH THEORY Undirected graphs Subgraphs usgrspan  
				
		 
		
			
		 
		Description:   A spanning subgraph S  of a simple graph G  is a simple graph.
       (Contributed by AV , 15-Oct-2020)   (Revised by AV , 16-Oct-2020)   (Proof
       shortened by AV , 18-Nov-2020) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						uhgrspan.v ⊢  𝑉   =  ( Vtx ‘ 𝐺  )  
					
						uhgrspan.e ⊢  𝐸   =  ( iEdg ‘ 𝐺  )  
					
						uhgrspan.s ⊢  ( 𝜑   →  𝑆   ∈  𝑊  )  
					
						uhgrspan.q ⊢  ( 𝜑   →  ( Vtx ‘ 𝑆  )  =  𝑉  )  
					
						uhgrspan.r ⊢  ( 𝜑   →  ( iEdg ‘ 𝑆  )  =  ( 𝐸   ↾  𝐴  ) )  
					
						usgrspan.g ⊢  ( 𝜑   →  𝐺   ∈  USGraph )  
				
					Assertion 
					usgrspan ⊢   ( 𝜑   →  𝑆   ∈  USGraph )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							uhgrspan.v ⊢  𝑉   =  ( Vtx ‘ 𝐺  )  
						
							2 
								
							 
							uhgrspan.e ⊢  𝐸   =  ( iEdg ‘ 𝐺  )  
						
							3 
								
							 
							uhgrspan.s ⊢  ( 𝜑   →  𝑆   ∈  𝑊  )  
						
							4 
								
							 
							uhgrspan.q ⊢  ( 𝜑   →  ( Vtx ‘ 𝑆  )  =  𝑉  )  
						
							5 
								
							 
							uhgrspan.r ⊢  ( 𝜑   →  ( iEdg ‘ 𝑆  )  =  ( 𝐸   ↾  𝐴  ) )  
						
							6 
								
							 
							usgrspan.g ⊢  ( 𝜑   →  𝐺   ∈  USGraph )  
						
							7 
								
							 
							usgruhgr ⊢  ( 𝐺   ∈  USGraph  →  𝐺   ∈  UHGraph )  
						
							8 
								6  7 
							 
							syl ⊢  ( 𝜑   →  𝐺   ∈  UHGraph )  
						
							9 
								1  2  3  4  5  8 
							 
							uhgrspansubgr ⊢  ( 𝜑   →  𝑆   SubGraph  𝐺  )  
						
							10 
								
							 
							subusgr ⊢  ( ( 𝐺   ∈  USGraph  ∧  𝑆   SubGraph  𝐺  )  →  𝑆   ∈  USGraph )  
						
							11 
								6  9  10 
							 
							syl2anc ⊢  ( 𝜑   →  𝑆   ∈  USGraph )