| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uhgrspanop.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | uhgrspanop.e | ⊢ 𝐸  =  ( iEdg ‘ 𝐺 ) | 
						
							| 3 |  | opex | ⊢ 〈 𝑉 ,  ( 𝐸  ↾  𝐴 ) 〉  ∈  V | 
						
							| 4 | 3 | a1i | ⊢ ( 𝐺  ∈  UHGraph  →  〈 𝑉 ,  ( 𝐸  ↾  𝐴 ) 〉  ∈  V ) | 
						
							| 5 | 1 | fvexi | ⊢ 𝑉  ∈  V | 
						
							| 6 | 2 | fvexi | ⊢ 𝐸  ∈  V | 
						
							| 7 | 6 | resex | ⊢ ( 𝐸  ↾  𝐴 )  ∈  V | 
						
							| 8 | 5 7 | opvtxfvi | ⊢ ( Vtx ‘ 〈 𝑉 ,  ( 𝐸  ↾  𝐴 ) 〉 )  =  𝑉 | 
						
							| 9 | 8 | a1i | ⊢ ( 𝐺  ∈  UHGraph  →  ( Vtx ‘ 〈 𝑉 ,  ( 𝐸  ↾  𝐴 ) 〉 )  =  𝑉 ) | 
						
							| 10 | 5 7 | opiedgfvi | ⊢ ( iEdg ‘ 〈 𝑉 ,  ( 𝐸  ↾  𝐴 ) 〉 )  =  ( 𝐸  ↾  𝐴 ) | 
						
							| 11 | 10 | a1i | ⊢ ( 𝐺  ∈  UHGraph  →  ( iEdg ‘ 〈 𝑉 ,  ( 𝐸  ↾  𝐴 ) 〉 )  =  ( 𝐸  ↾  𝐴 ) ) | 
						
							| 12 |  | id | ⊢ ( 𝐺  ∈  UHGraph  →  𝐺  ∈  UHGraph ) | 
						
							| 13 | 1 2 4 9 11 12 | uhgrspan | ⊢ ( 𝐺  ∈  UHGraph  →  〈 𝑉 ,  ( 𝐸  ↾  𝐴 ) 〉  ∈  UHGraph ) |