| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uhgrspanop.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | uhgrspanop.e |  |-  E = ( iEdg ` G ) | 
						
							| 3 |  | opex |  |-  <. V , ( E |` A ) >. e. _V | 
						
							| 4 | 3 | a1i |  |-  ( G e. UHGraph -> <. V , ( E |` A ) >. e. _V ) | 
						
							| 5 | 1 | fvexi |  |-  V e. _V | 
						
							| 6 | 2 | fvexi |  |-  E e. _V | 
						
							| 7 | 6 | resex |  |-  ( E |` A ) e. _V | 
						
							| 8 | 5 7 | opvtxfvi |  |-  ( Vtx ` <. V , ( E |` A ) >. ) = V | 
						
							| 9 | 8 | a1i |  |-  ( G e. UHGraph -> ( Vtx ` <. V , ( E |` A ) >. ) = V ) | 
						
							| 10 | 5 7 | opiedgfvi |  |-  ( iEdg ` <. V , ( E |` A ) >. ) = ( E |` A ) | 
						
							| 11 | 10 | a1i |  |-  ( G e. UHGraph -> ( iEdg ` <. V , ( E |` A ) >. ) = ( E |` A ) ) | 
						
							| 12 |  | id |  |-  ( G e. UHGraph -> G e. UHGraph ) | 
						
							| 13 | 1 2 4 9 11 12 | uhgrspan |  |-  ( G e. UHGraph -> <. V , ( E |` A ) >. e. UHGraph ) |