| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uhgrspanop.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | uhgrspanop.e |  |-  E = ( iEdg ` G ) | 
						
							| 3 |  | vex |  |-  g e. _V | 
						
							| 4 | 3 | a1i |  |-  ( ( G e. UPGraph /\ ( ( Vtx ` g ) = V /\ ( iEdg ` g ) = ( E |` A ) ) ) -> g e. _V ) | 
						
							| 5 |  | simprl |  |-  ( ( G e. UPGraph /\ ( ( Vtx ` g ) = V /\ ( iEdg ` g ) = ( E |` A ) ) ) -> ( Vtx ` g ) = V ) | 
						
							| 6 |  | simprr |  |-  ( ( G e. UPGraph /\ ( ( Vtx ` g ) = V /\ ( iEdg ` g ) = ( E |` A ) ) ) -> ( iEdg ` g ) = ( E |` A ) ) | 
						
							| 7 |  | simpl |  |-  ( ( G e. UPGraph /\ ( ( Vtx ` g ) = V /\ ( iEdg ` g ) = ( E |` A ) ) ) -> G e. UPGraph ) | 
						
							| 8 | 1 2 4 5 6 7 | upgrspan |  |-  ( ( G e. UPGraph /\ ( ( Vtx ` g ) = V /\ ( iEdg ` g ) = ( E |` A ) ) ) -> g e. UPGraph ) | 
						
							| 9 | 8 | ex |  |-  ( G e. UPGraph -> ( ( ( Vtx ` g ) = V /\ ( iEdg ` g ) = ( E |` A ) ) -> g e. UPGraph ) ) | 
						
							| 10 | 9 | alrimiv |  |-  ( G e. UPGraph -> A. g ( ( ( Vtx ` g ) = V /\ ( iEdg ` g ) = ( E |` A ) ) -> g e. UPGraph ) ) | 
						
							| 11 | 1 | fvexi |  |-  V e. _V | 
						
							| 12 | 11 | a1i |  |-  ( G e. UPGraph -> V e. _V ) | 
						
							| 13 | 2 | fvexi |  |-  E e. _V | 
						
							| 14 | 13 | resex |  |-  ( E |` A ) e. _V | 
						
							| 15 | 14 | a1i |  |-  ( G e. UPGraph -> ( E |` A ) e. _V ) | 
						
							| 16 | 10 12 15 | gropeld |  |-  ( G e. UPGraph -> <. V , ( E |` A ) >. e. UPGraph ) |