Metamath Proof Explorer


Theorem upgrspanop

Description: A spanning subgraph of a pseudograph represented by an ordered pair is a pseudograph. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by AV, 13-Oct-2020)

Ref Expression
Hypotheses uhgrspanop.v V=VtxG
uhgrspanop.e E=iEdgG
Assertion upgrspanop GUPGraphVEAUPGraph

Proof

Step Hyp Ref Expression
1 uhgrspanop.v V=VtxG
2 uhgrspanop.e E=iEdgG
3 vex gV
4 3 a1i GUPGraphVtxg=ViEdgg=EAgV
5 simprl GUPGraphVtxg=ViEdgg=EAVtxg=V
6 simprr GUPGraphVtxg=ViEdgg=EAiEdgg=EA
7 simpl GUPGraphVtxg=ViEdgg=EAGUPGraph
8 1 2 4 5 6 7 upgrspan GUPGraphVtxg=ViEdgg=EAgUPGraph
9 8 ex GUPGraphVtxg=ViEdgg=EAgUPGraph
10 9 alrimiv GUPGraphgVtxg=ViEdgg=EAgUPGraph
11 1 fvexi VV
12 11 a1i GUPGraphVV
13 2 fvexi EV
14 13 resex EAV
15 14 a1i GUPGraphEAV
16 10 12 15 gropeld GUPGraphVEAUPGraph