Metamath Proof Explorer


Theorem gropeld

Description: If any representation of a graph with vertices V and edges E is an element of an arbitrary class C , then the ordered pair <. V , E >. of the set of vertices and the set of edges (which is such a representation of a graph with vertices V and edges E ) is an element of this class C . (Contributed by AV, 11-Oct-2020)

Ref Expression
Hypotheses gropeld.g φ g Vtx g = V iEdg g = E g C
gropeld.v φ V U
gropeld.e φ E W
Assertion gropeld φ V E C

Proof

Step Hyp Ref Expression
1 gropeld.g φ g Vtx g = V iEdg g = E g C
2 gropeld.v φ V U
3 gropeld.e φ E W
4 1 2 3 gropd φ [˙ V E / g]˙ g C
5 sbcel1v [˙ V E / g]˙ g C V E C
6 4 5 sylib φ V E C