Metamath Proof Explorer


Theorem gropeld

Description: If any representation of a graph with vertices V and edges E is an element of an arbitrary class C , then the ordered pair <. V , E >. of the set of vertices and the set of edges (which is such a representation of a graph with vertices V and edges E ) is an element of this class C . (Contributed by AV, 11-Oct-2020)

Ref Expression
Hypotheses gropeld.g ( 𝜑 → ∀ 𝑔 ( ( ( Vtx ‘ 𝑔 ) = 𝑉 ∧ ( iEdg ‘ 𝑔 ) = 𝐸 ) → 𝑔𝐶 ) )
gropeld.v ( 𝜑𝑉𝑈 )
gropeld.e ( 𝜑𝐸𝑊 )
Assertion gropeld ( 𝜑 → ⟨ 𝑉 , 𝐸 ⟩ ∈ 𝐶 )

Proof

Step Hyp Ref Expression
1 gropeld.g ( 𝜑 → ∀ 𝑔 ( ( ( Vtx ‘ 𝑔 ) = 𝑉 ∧ ( iEdg ‘ 𝑔 ) = 𝐸 ) → 𝑔𝐶 ) )
2 gropeld.v ( 𝜑𝑉𝑈 )
3 gropeld.e ( 𝜑𝐸𝑊 )
4 1 2 3 gropd ( 𝜑[𝑉 , 𝐸 ⟩ / 𝑔 ] 𝑔𝐶 )
5 sbcel1v ( [𝑉 , 𝐸 ⟩ / 𝑔 ] 𝑔𝐶 ↔ ⟨ 𝑉 , 𝐸 ⟩ ∈ 𝐶 )
6 4 5 sylib ( 𝜑 → ⟨ 𝑉 , 𝐸 ⟩ ∈ 𝐶 )