Description: The union U of two simple graphs G and H with the same vertex set V is a multigraph (not necessarily a simple graph!) with the vertex V and the union ( E u. F ) of the (indexed) edges. (Contributed by AV, 29-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | usgrun.g | ⊢ ( 𝜑 → 𝐺 ∈ USGraph ) | |
| usgrun.h | ⊢ ( 𝜑 → 𝐻 ∈ USGraph ) | ||
| usgrun.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | ||
| usgrun.f | ⊢ 𝐹 = ( iEdg ‘ 𝐻 ) | ||
| usgrun.vg | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | ||
| usgrun.vh | ⊢ ( 𝜑 → ( Vtx ‘ 𝐻 ) = 𝑉 ) | ||
| usgrun.i | ⊢ ( 𝜑 → ( dom 𝐸 ∩ dom 𝐹 ) = ∅ ) | ||
| usgrun.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑊 ) | ||
| usgrun.v | ⊢ ( 𝜑 → ( Vtx ‘ 𝑈 ) = 𝑉 ) | ||
| usgrun.un | ⊢ ( 𝜑 → ( iEdg ‘ 𝑈 ) = ( 𝐸 ∪ 𝐹 ) ) | ||
| Assertion | usgrun | ⊢ ( 𝜑 → 𝑈 ∈ UMGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrun.g | ⊢ ( 𝜑 → 𝐺 ∈ USGraph ) | |
| 2 | usgrun.h | ⊢ ( 𝜑 → 𝐻 ∈ USGraph ) | |
| 3 | usgrun.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
| 4 | usgrun.f | ⊢ 𝐹 = ( iEdg ‘ 𝐻 ) | |
| 5 | usgrun.vg | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 6 | usgrun.vh | ⊢ ( 𝜑 → ( Vtx ‘ 𝐻 ) = 𝑉 ) | |
| 7 | usgrun.i | ⊢ ( 𝜑 → ( dom 𝐸 ∩ dom 𝐹 ) = ∅ ) | |
| 8 | usgrun.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑊 ) | |
| 9 | usgrun.v | ⊢ ( 𝜑 → ( Vtx ‘ 𝑈 ) = 𝑉 ) | |
| 10 | usgrun.un | ⊢ ( 𝜑 → ( iEdg ‘ 𝑈 ) = ( 𝐸 ∪ 𝐹 ) ) | |
| 11 | usgrumgr | ⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ UMGraph ) | |
| 12 | 1 11 | syl | ⊢ ( 𝜑 → 𝐺 ∈ UMGraph ) |
| 13 | usgrumgr | ⊢ ( 𝐻 ∈ USGraph → 𝐻 ∈ UMGraph ) | |
| 14 | 2 13 | syl | ⊢ ( 𝜑 → 𝐻 ∈ UMGraph ) |
| 15 | 12 14 3 4 5 6 7 8 9 10 | umgrun | ⊢ ( 𝜑 → 𝑈 ∈ UMGraph ) |