| Step |
Hyp |
Ref |
Expression |
| 1 |
|
umgrun.g |
⊢ ( 𝜑 → 𝐺 ∈ UMGraph ) |
| 2 |
|
umgrun.h |
⊢ ( 𝜑 → 𝐻 ∈ UMGraph ) |
| 3 |
|
umgrun.e |
⊢ 𝐸 = ( iEdg ‘ 𝐺 ) |
| 4 |
|
umgrun.f |
⊢ 𝐹 = ( iEdg ‘ 𝐻 ) |
| 5 |
|
umgrun.vg |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 6 |
|
umgrun.vh |
⊢ ( 𝜑 → ( Vtx ‘ 𝐻 ) = 𝑉 ) |
| 7 |
|
umgrun.i |
⊢ ( 𝜑 → ( dom 𝐸 ∩ dom 𝐹 ) = ∅ ) |
| 8 |
|
umgrun.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑊 ) |
| 9 |
|
umgrun.v |
⊢ ( 𝜑 → ( Vtx ‘ 𝑈 ) = 𝑉 ) |
| 10 |
|
umgrun.un |
⊢ ( 𝜑 → ( iEdg ‘ 𝑈 ) = ( 𝐸 ∪ 𝐹 ) ) |
| 11 |
5 3
|
umgrf |
⊢ ( 𝐺 ∈ UMGraph → 𝐸 : dom 𝐸 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 12 |
1 11
|
syl |
⊢ ( 𝜑 → 𝐸 : dom 𝐸 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 13 |
|
eqid |
⊢ ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 𝐻 ) |
| 14 |
13 4
|
umgrf |
⊢ ( 𝐻 ∈ UMGraph → 𝐹 : dom 𝐹 ⟶ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 15 |
2 14
|
syl |
⊢ ( 𝜑 → 𝐹 : dom 𝐹 ⟶ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 16 |
6
|
eqcomd |
⊢ ( 𝜑 → 𝑉 = ( Vtx ‘ 𝐻 ) ) |
| 17 |
16
|
pweqd |
⊢ ( 𝜑 → 𝒫 𝑉 = 𝒫 ( Vtx ‘ 𝐻 ) ) |
| 18 |
17
|
rabeqdv |
⊢ ( 𝜑 → { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } = { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 19 |
18
|
feq3d |
⊢ ( 𝜑 → ( 𝐹 : dom 𝐹 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ↔ 𝐹 : dom 𝐹 ⟶ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
| 20 |
15 19
|
mpbird |
⊢ ( 𝜑 → 𝐹 : dom 𝐹 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 21 |
12 20 7
|
fun2d |
⊢ ( 𝜑 → ( 𝐸 ∪ 𝐹 ) : ( dom 𝐸 ∪ dom 𝐹 ) ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 22 |
10
|
dmeqd |
⊢ ( 𝜑 → dom ( iEdg ‘ 𝑈 ) = dom ( 𝐸 ∪ 𝐹 ) ) |
| 23 |
|
dmun |
⊢ dom ( 𝐸 ∪ 𝐹 ) = ( dom 𝐸 ∪ dom 𝐹 ) |
| 24 |
22 23
|
eqtrdi |
⊢ ( 𝜑 → dom ( iEdg ‘ 𝑈 ) = ( dom 𝐸 ∪ dom 𝐹 ) ) |
| 25 |
9
|
pweqd |
⊢ ( 𝜑 → 𝒫 ( Vtx ‘ 𝑈 ) = 𝒫 𝑉 ) |
| 26 |
25
|
rabeqdv |
⊢ ( 𝜑 → { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝑈 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } = { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 27 |
10 24 26
|
feq123d |
⊢ ( 𝜑 → ( ( iEdg ‘ 𝑈 ) : dom ( iEdg ‘ 𝑈 ) ⟶ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝑈 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ↔ ( 𝐸 ∪ 𝐹 ) : ( dom 𝐸 ∪ dom 𝐹 ) ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
| 28 |
21 27
|
mpbird |
⊢ ( 𝜑 → ( iEdg ‘ 𝑈 ) : dom ( iEdg ‘ 𝑈 ) ⟶ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝑈 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 29 |
|
eqid |
⊢ ( Vtx ‘ 𝑈 ) = ( Vtx ‘ 𝑈 ) |
| 30 |
|
eqid |
⊢ ( iEdg ‘ 𝑈 ) = ( iEdg ‘ 𝑈 ) |
| 31 |
29 30
|
isumgrs |
⊢ ( 𝑈 ∈ 𝑊 → ( 𝑈 ∈ UMGraph ↔ ( iEdg ‘ 𝑈 ) : dom ( iEdg ‘ 𝑈 ) ⟶ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝑈 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
| 32 |
8 31
|
syl |
⊢ ( 𝜑 → ( 𝑈 ∈ UMGraph ↔ ( iEdg ‘ 𝑈 ) : dom ( iEdg ‘ 𝑈 ) ⟶ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝑈 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
| 33 |
28 32
|
mpbird |
⊢ ( 𝜑 → 𝑈 ∈ UMGraph ) |